File: dppcon

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (85 lines) | stat: -rwxr-xr-x 2,676 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
--- 
:name: dppcon
:md5sum: 3736fd97dc2539bc118db306bfb573fb
:category: :subroutine
:arguments: 
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- ap: 
    :type: doublereal
    :intent: input
    :dims: 
    - ldap
- anorm: 
    :type: doublereal
    :intent: input
- rcond: 
    :type: doublereal
    :intent: output
- work: 
    :type: doublereal
    :intent: workspace
    :dims: 
    - 3*n
- iwork: 
    :type: integer
    :intent: workspace
    :dims: 
    - n
- info: 
    :type: integer
    :intent: output
:substitutions: 
  n: ((int)sqrtf(ldap*8+1.0f)-1)/2
:fortran_help: "      SUBROUTINE DPPCON( UPLO, N, AP, ANORM, RCOND, WORK, IWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DPPCON estimates the reciprocal of the condition number (in the\n\
  *  1-norm) of a real symmetric positive definite packed matrix using\n\
  *  the Cholesky factorization A = U**T*U or A = L*L**T computed by\n\
  *  DPPTRF.\n\
  *\n\
  *  An estimate is obtained for norm(inv(A)), and the reciprocal of the\n\
  *  condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          = 'U':  Upper triangle of A is stored;\n\
  *          = 'L':  Lower triangle of A is stored.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.\n\
  *\n\
  *  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)\n\
  *          The triangular factor U or L from the Cholesky factorization\n\
  *          A = U**T*U or A = L*L**T, packed columnwise in a linear\n\
  *          array.  The j-th column of U or L is stored in the array AP\n\
  *          as follows:\n\
  *          if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;\n\
  *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.\n\
  *\n\
  *  ANORM   (input) DOUBLE PRECISION\n\
  *          The 1-norm (or infinity-norm) of the symmetric matrix A.\n\
  *\n\
  *  RCOND   (output) DOUBLE PRECISION\n\
  *          The reciprocal of the condition number of the matrix A,\n\
  *          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an\n\
  *          estimate of the 1-norm of inv(A) computed in this routine.\n\
  *\n\
  *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)\n\
  *\n\
  *  IWORK   (workspace) INTEGER array, dimension (N)\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"