File: dpptrf

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (81 lines) | stat: -rwxr-xr-x 2,674 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
--- 
:name: dpptrf
:md5sum: 114d74d68f2338940fdfcbbc9fe314c0
:category: :subroutine
:arguments: 
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- ap: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - n*(n+1)/2
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE DPPTRF( UPLO, N, AP, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DPPTRF computes the Cholesky factorization of a real symmetric\n\
  *  positive definite matrix A stored in packed format.\n\
  *\n\
  *  The factorization has the form\n\
  *     A = U**T * U,  if UPLO = 'U', or\n\
  *     A = L  * L**T,  if UPLO = 'L',\n\
  *  where U is an upper triangular matrix and L is lower triangular.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          = 'U':  Upper triangle of A is stored;\n\
  *          = 'L':  Lower triangle of A is stored.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.\n\
  *\n\
  *  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)\n\
  *          On entry, the upper or lower triangle of the symmetric matrix\n\
  *          A, packed columnwise in a linear array.  The j-th column of A\n\
  *          is stored in the array AP as follows:\n\
  *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n\
  *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.\n\
  *          See below for further details.\n\
  *\n\
  *          On exit, if INFO = 0, the triangular factor U or L from the\n\
  *          Cholesky factorization A = U**T*U or A = L*L**T, in the same\n\
  *          storage format as A.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *          > 0:  if INFO = i, the leading minor of order i is not\n\
  *                positive definite, and the factorization could not be\n\
  *                completed.\n\
  *\n\n\
  *  Further Details\n\
  *  ======= =======\n\
  *\n\
  *  The packed storage scheme is illustrated by the following example\n\
  *  when N = 4, UPLO = 'U':\n\
  *\n\
  *  Two-dimensional storage of the symmetric matrix A:\n\
  *\n\
  *     a11 a12 a13 a14\n\
  *         a22 a23 a24\n\
  *             a33 a34     (aij = aji)\n\
  *                 a44\n\
  *\n\
  *  Packed storage of the upper triangle of A:\n\
  *\n\
  *  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]\n\
  *\n\
  *  =====================================================================\n\
  *\n"