File: dpttrf

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (59 lines) | stat: -rwxr-xr-x 2,036 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
--- 
:name: dpttrf
:md5sum: 203e7bbfdbd7f2634ace2a157d4cb178
:category: :subroutine
:arguments: 
- n: 
    :type: integer
    :intent: input
- d: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - n
- e: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - n-1
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE DPTTRF( N, D, E, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DPTTRF computes the L*D*L' factorization of a real symmetric\n\
  *  positive definite tridiagonal matrix A.  The factorization may also\n\
  *  be regarded as having the form A = U'*D*U.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.\n\
  *\n\
  *  D       (input/output) DOUBLE PRECISION array, dimension (N)\n\
  *          On entry, the n diagonal elements of the tridiagonal matrix\n\
  *          A.  On exit, the n diagonal elements of the diagonal matrix\n\
  *          D from the L*D*L' factorization of A.\n\
  *\n\
  *  E       (input/output) DOUBLE PRECISION array, dimension (N-1)\n\
  *          On entry, the (n-1) subdiagonal elements of the tridiagonal\n\
  *          matrix A.  On exit, the (n-1) subdiagonal elements of the\n\
  *          unit bidiagonal factor L from the L*D*L' factorization of A.\n\
  *          E can also be regarded as the superdiagonal of the unit\n\
  *          bidiagonal factor U from the U'*D*U factorization of A.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0: successful exit\n\
  *          < 0: if INFO = -k, the k-th argument had an illegal value\n\
  *          > 0: if INFO = k, the leading minor of order k is not\n\
  *               positive definite; if k < N, the factorization could not\n\
  *               be completed, while if k = N, the factorization was\n\
  *               completed, but D(N) <= 0.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"