1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
---
:name: dsbevx
:md5sum: c54c0d69a5f4df0fc356205a4641b5ae
:category: :subroutine
:arguments:
- jobz:
:type: char
:intent: input
- range:
:type: char
:intent: input
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- kd:
:type: integer
:intent: input
- ab:
:type: doublereal
:intent: input/output
:dims:
- ldab
- n
- ldab:
:type: integer
:intent: input
- q:
:type: doublereal
:intent: output
:dims:
- ldq
- n
- ldq:
:type: integer
:intent: input
- vl:
:type: doublereal
:intent: input
- vu:
:type: doublereal
:intent: input
- il:
:type: integer
:intent: input
- iu:
:type: integer
:intent: input
- abstol:
:type: doublereal
:intent: input
- m:
:type: integer
:intent: output
- w:
:type: doublereal
:intent: output
:dims:
- n
- z:
:type: doublereal
:intent: output
:dims:
- ldz
- MAX(1,m)
- ldz:
:type: integer
:intent: input
- work:
:type: doublereal
:intent: workspace
:dims:
- 7*n
- iwork:
:type: integer
:intent: workspace
:dims:
- 5*n
- ifail:
:type: integer
:intent: output
:dims:
- n
- info:
:type: integer
:intent: output
:substitutions:
ldz: "lsame_(&jobz,\"V\") ? MAX(1,n) : 1"
m: "lsame_(&range,\"A\") ? n : lsame_(&range,\"I\") ? iu-il+1 : 0"
ldq: "lsame_(&jobz,\"V\") ? MAX(1,n) : 0"
:fortran_help: " SUBROUTINE DSBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DSBEVX computes selected eigenvalues and, optionally, eigenvectors\n\
* of a real symmetric band matrix A. Eigenvalues and eigenvectors can\n\
* be selected by specifying either a range of values or a range of\n\
* indices for the desired eigenvalues.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* JOBZ (input) CHARACTER*1\n\
* = 'N': Compute eigenvalues only;\n\
* = 'V': Compute eigenvalues and eigenvectors.\n\
*\n\
* RANGE (input) CHARACTER*1\n\
* = 'A': all eigenvalues will be found;\n\
* = 'V': all eigenvalues in the half-open interval (VL,VU]\n\
* will be found;\n\
* = 'I': the IL-th through IU-th eigenvalues will be found.\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': Upper triangle of A is stored;\n\
* = 'L': Lower triangle of A is stored.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* KD (input) INTEGER\n\
* The number of superdiagonals of the matrix A if UPLO = 'U',\n\
* or the number of subdiagonals if UPLO = 'L'. KD >= 0.\n\
*\n\
* AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N)\n\
* On entry, the upper or lower triangle of the symmetric band\n\
* matrix A, stored in the first KD+1 rows of the array. The\n\
* j-th column of A is stored in the j-th column of the array AB\n\
* as follows:\n\
* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;\n\
* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).\n\
*\n\
* On exit, AB is overwritten by values generated during the\n\
* reduction to tridiagonal form. If UPLO = 'U', the first\n\
* superdiagonal and the diagonal of the tridiagonal matrix T\n\
* are returned in rows KD and KD+1 of AB, and if UPLO = 'L',\n\
* the diagonal and first subdiagonal of T are returned in the\n\
* first two rows of AB.\n\
*\n\
* LDAB (input) INTEGER\n\
* The leading dimension of the array AB. LDAB >= KD + 1.\n\
*\n\
* Q (output) DOUBLE PRECISION array, dimension (LDQ, N)\n\
* If JOBZ = 'V', the N-by-N orthogonal matrix used in the\n\
* reduction to tridiagonal form.\n\
* If JOBZ = 'N', the array Q is not referenced.\n\
*\n\
* LDQ (input) INTEGER\n\
* The leading dimension of the array Q. If JOBZ = 'V', then\n\
* LDQ >= max(1,N).\n\
*\n\
* VL (input) DOUBLE PRECISION\n\
* VU (input) DOUBLE PRECISION\n\
* If RANGE='V', the lower and upper bounds of the interval to\n\
* be searched for eigenvalues. VL < VU.\n\
* Not referenced if RANGE = 'A' or 'I'.\n\
*\n\
* IL (input) INTEGER\n\
* IU (input) INTEGER\n\
* If RANGE='I', the indices (in ascending order) of the\n\
* smallest and largest eigenvalues to be returned.\n\
* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.\n\
* Not referenced if RANGE = 'A' or 'V'.\n\
*\n\
* ABSTOL (input) DOUBLE PRECISION\n\
* The absolute error tolerance for the eigenvalues.\n\
* An approximate eigenvalue is accepted as converged\n\
* when it is determined to lie in an interval [a,b]\n\
* of width less than or equal to\n\
*\n\
* ABSTOL + EPS * max( |a|,|b| ) ,\n\
*\n\
* where EPS is the machine precision. If ABSTOL is less than\n\
* or equal to zero, then EPS*|T| will be used in its place,\n\
* where |T| is the 1-norm of the tridiagonal matrix obtained\n\
* by reducing AB to tridiagonal form.\n\
*\n\
* Eigenvalues will be computed most accurately when ABSTOL is\n\
* set to twice the underflow threshold 2*DLAMCH('S'), not zero.\n\
* If this routine returns with INFO>0, indicating that some\n\
* eigenvectors did not converge, try setting ABSTOL to\n\
* 2*DLAMCH('S').\n\
*\n\
* See \"Computing Small Singular Values of Bidiagonal Matrices\n\
* with Guaranteed High Relative Accuracy,\" by Demmel and\n\
* Kahan, LAPACK Working Note #3.\n\
*\n\
* M (output) INTEGER\n\
* The total number of eigenvalues found. 0 <= M <= N.\n\
* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.\n\
*\n\
* W (output) DOUBLE PRECISION array, dimension (N)\n\
* The first M elements contain the selected eigenvalues in\n\
* ascending order.\n\
*\n\
* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))\n\
* If JOBZ = 'V', then if INFO = 0, the first M columns of Z\n\
* contain the orthonormal eigenvectors of the matrix A\n\
* corresponding to the selected eigenvalues, with the i-th\n\
* column of Z holding the eigenvector associated with W(i).\n\
* If an eigenvector fails to converge, then that column of Z\n\
* contains the latest approximation to the eigenvector, and the\n\
* index of the eigenvector is returned in IFAIL.\n\
* If JOBZ = 'N', then Z is not referenced.\n\
* Note: the user must ensure that at least max(1,M) columns are\n\
* supplied in the array Z; if RANGE = 'V', the exact value of M\n\
* is not known in advance and an upper bound must be used.\n\
*\n\
* LDZ (input) INTEGER\n\
* The leading dimension of the array Z. LDZ >= 1, and if\n\
* JOBZ = 'V', LDZ >= max(1,N).\n\
*\n\
* WORK (workspace) DOUBLE PRECISION array, dimension (7*N)\n\
*\n\
* IWORK (workspace) INTEGER array, dimension (5*N)\n\
*\n\
* IFAIL (output) INTEGER array, dimension (N)\n\
* If JOBZ = 'V', then if INFO = 0, the first M elements of\n\
* IFAIL are zero. If INFO > 0, then IFAIL contains the\n\
* indices of the eigenvectors that failed to converge.\n\
* If JOBZ = 'N', then IFAIL is not referenced.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit.\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
* > 0: if INFO = i, then i eigenvectors failed to converge.\n\
* Their indices are stored in array IFAIL.\n\
*\n\n\
* =====================================================================\n\
*\n"
|