1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
---
:name: dsbgst
:md5sum: d2437ea90e45fe4864720cf3787add9d
:category: :subroutine
:arguments:
- vect:
:type: char
:intent: input
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- ka:
:type: integer
:intent: input
- kb:
:type: integer
:intent: input
- ab:
:type: doublereal
:intent: input/output
:dims:
- ldab
- n
- ldab:
:type: integer
:intent: input
- bb:
:type: doublereal
:intent: input
:dims:
- ldbb
- n
- ldbb:
:type: integer
:intent: input
- x:
:type: doublereal
:intent: output
:dims:
- ldx
- n
- ldx:
:type: integer
:intent: input
- work:
:type: doublereal
:intent: workspace
:dims:
- 2*n
- info:
:type: integer
:intent: output
:substitutions:
ldx: "lsame_(&vect,\"V\") ? MAX(1,n) : 1"
:fortran_help: " SUBROUTINE DSBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X, LDX, WORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DSBGST reduces a real symmetric-definite banded generalized\n\
* eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y,\n\
* such that C has the same bandwidth as A.\n\
*\n\
* B must have been previously factorized as S**T*S by DPBSTF, using a\n\
* split Cholesky factorization. A is overwritten by C = X**T*A*X, where\n\
* X = S**(-1)*Q and Q is an orthogonal matrix chosen to preserve the\n\
* bandwidth of A.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* VECT (input) CHARACTER*1\n\
* = 'N': do not form the transformation matrix X;\n\
* = 'V': form X.\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': Upper triangle of A is stored;\n\
* = 'L': Lower triangle of A is stored.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrices A and B. N >= 0.\n\
*\n\
* KA (input) INTEGER\n\
* The number of superdiagonals of the matrix A if UPLO = 'U',\n\
* or the number of subdiagonals if UPLO = 'L'. KA >= 0.\n\
*\n\
* KB (input) INTEGER\n\
* The number of superdiagonals of the matrix B if UPLO = 'U',\n\
* or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0.\n\
*\n\
* AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)\n\
* On entry, the upper or lower triangle of the symmetric band\n\
* matrix A, stored in the first ka+1 rows of the array. The\n\
* j-th column of A is stored in the j-th column of the array AB\n\
* as follows:\n\
* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;\n\
* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).\n\
*\n\
* On exit, the transformed matrix X**T*A*X, stored in the same\n\
* format as A.\n\
*\n\
* LDAB (input) INTEGER\n\
* The leading dimension of the array AB. LDAB >= KA+1.\n\
*\n\
* BB (input) DOUBLE PRECISION array, dimension (LDBB,N)\n\
* The banded factor S from the split Cholesky factorization of\n\
* B, as returned by DPBSTF, stored in the first KB+1 rows of\n\
* the array.\n\
*\n\
* LDBB (input) INTEGER\n\
* The leading dimension of the array BB. LDBB >= KB+1.\n\
*\n\
* X (output) DOUBLE PRECISION array, dimension (LDX,N)\n\
* If VECT = 'V', the n-by-n matrix X.\n\
* If VECT = 'N', the array X is not referenced.\n\
*\n\
* LDX (input) INTEGER\n\
* The leading dimension of the array X.\n\
* LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise.\n\
*\n\
* WORK (workspace) DOUBLE PRECISION array, dimension (2*N)\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
*\n\n\
* =====================================================================\n\
*\n"
|