File: dsbgvx

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (259 lines) | stat: -rwxr-xr-x 9,197 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
--- 
:name: dsbgvx
:md5sum: 1ee65cfeddf2efe1e17ddc18f8adf220
:category: :subroutine
:arguments: 
- jobz: 
    :type: char
    :intent: input
- range: 
    :type: char
    :intent: input
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- ka: 
    :type: integer
    :intent: input
- kb: 
    :type: integer
    :intent: input
- ab: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - ldab
    - n
- ldab: 
    :type: integer
    :intent: input
- bb: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - ldbb
    - n
- ldbb: 
    :type: integer
    :intent: input
- q: 
    :type: doublereal
    :intent: output
    :dims: 
    - ldq
    - n
- ldq: 
    :type: integer
    :intent: input
- vl: 
    :type: doublereal
    :intent: input
- vu: 
    :type: doublereal
    :intent: input
- il: 
    :type: integer
    :intent: input
- iu: 
    :type: integer
    :intent: input
- abstol: 
    :type: doublereal
    :intent: input
- m: 
    :type: integer
    :intent: output
- w: 
    :type: doublereal
    :intent: output
    :dims: 
    - n
- z: 
    :type: doublereal
    :intent: output
    :dims: 
    - ldz
    - n
- ldz: 
    :type: integer
    :intent: input
- work: 
    :type: doublereal
    :intent: output
    :dims: 
    - 7*n
- iwork: 
    :type: integer
    :intent: output
    :dims: 
    - 5*n
- ifail: 
    :type: integer
    :intent: output
    :dims: 
    - m
- info: 
    :type: integer
    :intent: output
:substitutions: 
  ldz: "lsame_(&jobz,\"V\") ? MAX(1,n) : 1"
  m: "lsame_(&range,\"A\") ? n : lsame_(&range,\"I\") ? iu-il+1 : 0"
  ldq: "1 ? jobz = 'n' : MAX(1,n) ? jobz = 'v' : 0"
:fortran_help: "      SUBROUTINE DSBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DSBGVX computes selected eigenvalues, and optionally, eigenvectors\n\
  *  of a real generalized symmetric-definite banded eigenproblem, of\n\
  *  the form A*x=(lambda)*B*x.  Here A and B are assumed to be symmetric\n\
  *  and banded, and B is also positive definite.  Eigenvalues and\n\
  *  eigenvectors can be selected by specifying either all eigenvalues,\n\
  *  a range of values or a range of indices for the desired eigenvalues.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  JOBZ    (input) CHARACTER*1\n\
  *          = 'N':  Compute eigenvalues only;\n\
  *          = 'V':  Compute eigenvalues and eigenvectors.\n\
  *\n\
  *  RANGE   (input) CHARACTER*1\n\
  *          = 'A': all eigenvalues will be found.\n\
  *          = 'V': all eigenvalues in the half-open interval (VL,VU]\n\
  *                 will be found.\n\
  *          = 'I': the IL-th through IU-th eigenvalues will be found.\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          = 'U':  Upper triangles of A and B are stored;\n\
  *          = 'L':  Lower triangles of A and B are stored.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrices A and B.  N >= 0.\n\
  *\n\
  *  KA      (input) INTEGER\n\
  *          The number of superdiagonals of the matrix A if UPLO = 'U',\n\
  *          or the number of subdiagonals if UPLO = 'L'.  KA >= 0.\n\
  *\n\
  *  KB      (input) INTEGER\n\
  *          The number of superdiagonals of the matrix B if UPLO = 'U',\n\
  *          or the number of subdiagonals if UPLO = 'L'.  KB >= 0.\n\
  *\n\
  *  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB, N)\n\
  *          On entry, the upper or lower triangle of the symmetric band\n\
  *          matrix A, stored in the first ka+1 rows of the array.  The\n\
  *          j-th column of A is stored in the j-th column of the array AB\n\
  *          as follows:\n\
  *          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;\n\
  *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).\n\
  *\n\
  *          On exit, the contents of AB are destroyed.\n\
  *\n\
  *  LDAB    (input) INTEGER\n\
  *          The leading dimension of the array AB.  LDAB >= KA+1.\n\
  *\n\
  *  BB      (input/output) DOUBLE PRECISION array, dimension (LDBB, N)\n\
  *          On entry, the upper or lower triangle of the symmetric band\n\
  *          matrix B, stored in the first kb+1 rows of the array.  The\n\
  *          j-th column of B is stored in the j-th column of the array BB\n\
  *          as follows:\n\
  *          if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;\n\
  *          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).\n\
  *\n\
  *          On exit, the factor S from the split Cholesky factorization\n\
  *          B = S**T*S, as returned by DPBSTF.\n\
  *\n\
  *  LDBB    (input) INTEGER\n\
  *          The leading dimension of the array BB.  LDBB >= KB+1.\n\
  *\n\
  *  Q       (output) DOUBLE PRECISION array, dimension (LDQ, N)\n\
  *          If JOBZ = 'V', the n-by-n matrix used in the reduction of\n\
  *          A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,\n\
  *          and consequently C to tridiagonal form.\n\
  *          If JOBZ = 'N', the array Q is not referenced.\n\
  *\n\
  *  LDQ     (input) INTEGER\n\
  *          The leading dimension of the array Q.  If JOBZ = 'N',\n\
  *          LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).\n\
  *\n\
  *  VL      (input) DOUBLE PRECISION\n\
  *  VU      (input) DOUBLE PRECISION\n\
  *          If RANGE='V', the lower and upper bounds of the interval to\n\
  *          be searched for eigenvalues. VL < VU.\n\
  *          Not referenced if RANGE = 'A' or 'I'.\n\
  *\n\
  *  IL      (input) INTEGER\n\
  *  IU      (input) INTEGER\n\
  *          If RANGE='I', the indices (in ascending order) of the\n\
  *          smallest and largest eigenvalues to be returned.\n\
  *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.\n\
  *          Not referenced if RANGE = 'A' or 'V'.\n\
  *\n\
  *  ABSTOL  (input) DOUBLE PRECISION\n\
  *          The absolute error tolerance for the eigenvalues.\n\
  *          An approximate eigenvalue is accepted as converged\n\
  *          when it is determined to lie in an interval [a,b]\n\
  *          of width less than or equal to\n\
  *\n\
  *                  ABSTOL + EPS *   max( |a|,|b| ) ,\n\
  *\n\
  *          where EPS is the machine precision.  If ABSTOL is less than\n\
  *          or equal to zero, then  EPS*|T|  will be used in its place,\n\
  *          where |T| is the 1-norm of the tridiagonal matrix obtained\n\
  *          by reducing A to tridiagonal form.\n\
  *\n\
  *          Eigenvalues will be computed most accurately when ABSTOL is\n\
  *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.\n\
  *          If this routine returns with INFO>0, indicating that some\n\
  *          eigenvectors did not converge, try setting ABSTOL to\n\
  *          2*DLAMCH('S').\n\
  *\n\
  *  M       (output) INTEGER\n\
  *          The total number of eigenvalues found.  0 <= M <= N.\n\
  *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.\n\
  *\n\
  *  W       (output) DOUBLE PRECISION array, dimension (N)\n\
  *          If INFO = 0, the eigenvalues in ascending order.\n\
  *\n\
  *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)\n\
  *          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of\n\
  *          eigenvectors, with the i-th column of Z holding the\n\
  *          eigenvector associated with W(i).  The eigenvectors are\n\
  *          normalized so Z**T*B*Z = I.\n\
  *          If JOBZ = 'N', then Z is not referenced.\n\
  *\n\
  *  LDZ     (input) INTEGER\n\
  *          The leading dimension of the array Z.  LDZ >= 1, and if\n\
  *          JOBZ = 'V', LDZ >= max(1,N).\n\
  *\n\
  *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (7*N)\n\
  *\n\
  *  IWORK   (workspace/output) INTEGER array, dimension (5*N)\n\
  *\n\
  *  IFAIL   (output) INTEGER array, dimension (M)\n\
  *          If JOBZ = 'V', then if INFO = 0, the first M elements of\n\
  *          IFAIL are zero.  If INFO > 0, then IFAIL contains the\n\
  *          indices of the eigenvalues that failed to converge.\n\
  *          If JOBZ = 'N', then IFAIL is not referenced.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0 : successful exit\n\
  *          < 0 : if INFO = -i, the i-th argument had an illegal value\n\
  *          <= N: if INFO = i, then i eigenvectors failed to converge.\n\
  *                  Their indices are stored in IFAIL.\n\
  *          > N : DPBSTF returned an error code; i.e.,\n\
  *                if INFO = N + i, for 1 <= i <= N, then the leading\n\
  *                minor of order i of B is not positive definite.\n\
  *                The factorization of B could not be completed and\n\
  *                no eigenvalues or eigenvectors were computed.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  Based on contributions by\n\
  *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA\n\
  *\n\
  *  =====================================================================\n\
  *\n"