File: dsbtrd

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (132 lines) | stat: -rwxr-xr-x 4,197 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
--- 
:name: dsbtrd
:md5sum: f97e07edb1ff5355443723fc32114fa2
:category: :subroutine
:arguments: 
- vect: 
    :type: char
    :intent: input
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- kd: 
    :type: integer
    :intent: input
- ab: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - ldab
    - n
- ldab: 
    :type: integer
    :intent: input
- d: 
    :type: doublereal
    :intent: output
    :dims: 
    - n
- e: 
    :type: doublereal
    :intent: output
    :dims: 
    - n-1
- q: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - ldq
    - n
- ldq: 
    :type: integer
    :intent: input
- work: 
    :type: doublereal
    :intent: workspace
    :dims: 
    - n
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE DSBTRD( VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, WORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DSBTRD reduces a real symmetric band matrix A to symmetric\n\
  *  tridiagonal form T by an orthogonal similarity transformation:\n\
  *  Q**T * A * Q = T.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  VECT    (input) CHARACTER*1\n\
  *          = 'N':  do not form Q;\n\
  *          = 'V':  form Q;\n\
  *          = 'U':  update a matrix X, by forming X*Q.\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          = 'U':  Upper triangle of A is stored;\n\
  *          = 'L':  Lower triangle of A is stored.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.\n\
  *\n\
  *  KD      (input) INTEGER\n\
  *          The number of superdiagonals of the matrix A if UPLO = 'U',\n\
  *          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.\n\
  *\n\
  *  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N)\n\
  *          On entry, the upper or lower triangle of the symmetric band\n\
  *          matrix A, stored in the first KD+1 rows of the array.  The\n\
  *          j-th column of A is stored in the j-th column of the array AB\n\
  *          as follows:\n\
  *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;\n\
  *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).\n\
  *          On exit, the diagonal elements of AB are overwritten by the\n\
  *          diagonal elements of the tridiagonal matrix T; if KD > 0, the\n\
  *          elements on the first superdiagonal (if UPLO = 'U') or the\n\
  *          first subdiagonal (if UPLO = 'L') are overwritten by the\n\
  *          off-diagonal elements of T; the rest of AB is overwritten by\n\
  *          values generated during the reduction.\n\
  *\n\
  *  LDAB    (input) INTEGER\n\
  *          The leading dimension of the array AB.  LDAB >= KD+1.\n\
  *\n\
  *  D       (output) DOUBLE PRECISION array, dimension (N)\n\
  *          The diagonal elements of the tridiagonal matrix T.\n\
  *\n\
  *  E       (output) DOUBLE PRECISION array, dimension (N-1)\n\
  *          The off-diagonal elements of the tridiagonal matrix T:\n\
  *          E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.\n\
  *\n\
  *  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)\n\
  *          On entry, if VECT = 'U', then Q must contain an N-by-N\n\
  *          matrix X; if VECT = 'N' or 'V', then Q need not be set.\n\
  *\n\
  *          On exit:\n\
  *          if VECT = 'V', Q contains the N-by-N orthogonal matrix Q;\n\
  *          if VECT = 'U', Q contains the product X*Q;\n\
  *          if VECT = 'N', the array Q is not referenced.\n\
  *\n\
  *  LDQ     (input) INTEGER\n\
  *          The leading dimension of the array Q.\n\
  *          LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.\n\
  *\n\
  *  WORK    (workspace) DOUBLE PRECISION array, dimension (N)\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  Modified by Linda Kaufman, Bell Labs.\n\
  *\n\
  *  =====================================================================\n\
  *\n"