1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
---
:name: dsbtrd
:md5sum: f97e07edb1ff5355443723fc32114fa2
:category: :subroutine
:arguments:
- vect:
:type: char
:intent: input
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- kd:
:type: integer
:intent: input
- ab:
:type: doublereal
:intent: input/output
:dims:
- ldab
- n
- ldab:
:type: integer
:intent: input
- d:
:type: doublereal
:intent: output
:dims:
- n
- e:
:type: doublereal
:intent: output
:dims:
- n-1
- q:
:type: doublereal
:intent: input/output
:dims:
- ldq
- n
- ldq:
:type: integer
:intent: input
- work:
:type: doublereal
:intent: workspace
:dims:
- n
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE DSBTRD( VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, WORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DSBTRD reduces a real symmetric band matrix A to symmetric\n\
* tridiagonal form T by an orthogonal similarity transformation:\n\
* Q**T * A * Q = T.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* VECT (input) CHARACTER*1\n\
* = 'N': do not form Q;\n\
* = 'V': form Q;\n\
* = 'U': update a matrix X, by forming X*Q.\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': Upper triangle of A is stored;\n\
* = 'L': Lower triangle of A is stored.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* KD (input) INTEGER\n\
* The number of superdiagonals of the matrix A if UPLO = 'U',\n\
* or the number of subdiagonals if UPLO = 'L'. KD >= 0.\n\
*\n\
* AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)\n\
* On entry, the upper or lower triangle of the symmetric band\n\
* matrix A, stored in the first KD+1 rows of the array. The\n\
* j-th column of A is stored in the j-th column of the array AB\n\
* as follows:\n\
* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;\n\
* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).\n\
* On exit, the diagonal elements of AB are overwritten by the\n\
* diagonal elements of the tridiagonal matrix T; if KD > 0, the\n\
* elements on the first superdiagonal (if UPLO = 'U') or the\n\
* first subdiagonal (if UPLO = 'L') are overwritten by the\n\
* off-diagonal elements of T; the rest of AB is overwritten by\n\
* values generated during the reduction.\n\
*\n\
* LDAB (input) INTEGER\n\
* The leading dimension of the array AB. LDAB >= KD+1.\n\
*\n\
* D (output) DOUBLE PRECISION array, dimension (N)\n\
* The diagonal elements of the tridiagonal matrix T.\n\
*\n\
* E (output) DOUBLE PRECISION array, dimension (N-1)\n\
* The off-diagonal elements of the tridiagonal matrix T:\n\
* E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.\n\
*\n\
* Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)\n\
* On entry, if VECT = 'U', then Q must contain an N-by-N\n\
* matrix X; if VECT = 'N' or 'V', then Q need not be set.\n\
*\n\
* On exit:\n\
* if VECT = 'V', Q contains the N-by-N orthogonal matrix Q;\n\
* if VECT = 'U', Q contains the product X*Q;\n\
* if VECT = 'N', the array Q is not referenced.\n\
*\n\
* LDQ (input) INTEGER\n\
* The leading dimension of the array Q.\n\
* LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.\n\
*\n\
* WORK (workspace) DOUBLE PRECISION array, dimension (N)\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* Modified by Linda Kaufman, Bell Labs.\n\
*\n\
* =====================================================================\n\
*\n"
|