1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
---
:name: dsfrk
:md5sum: 0c83f186d2d8e20fbde488e693408f71
:category: :subroutine
:arguments:
- transr:
:type: char
:intent: input
- uplo:
:type: char
:intent: input
- trans:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- k:
:type: integer
:intent: input
- alpha:
:type: doublereal
:intent: input
- a:
:type: doublereal
:intent: input
:dims:
- lda
- "lsame_(&trans,\"N\") ? k : n"
- lda:
:type: integer
:intent: input
- beta:
:type: doublereal
:intent: input
- c:
:type: doublereal
:intent: input/output
:dims:
- nt
:substitutions: {}
:fortran_help: " SUBROUTINE DSFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C )\n\n\
* Purpose\n\
* =======\n\
*\n\
* Level 3 BLAS like routine for C in RFP Format.\n\
*\n\
* DSFRK performs one of the symmetric rank--k operations\n\
*\n\
* C := alpha*A*A' + beta*C,\n\
*\n\
* or\n\
*\n\
* C := alpha*A'*A + beta*C,\n\
*\n\
* where alpha and beta are real scalars, C is an n--by--n symmetric\n\
* matrix and A is an n--by--k matrix in the first case and a k--by--n\n\
* matrix in the second case.\n\
*\n\n\
* Arguments\n\
* ==========\n\
*\n\
* TRANSR (input) CHARACTER*1\n\
* = 'N': The Normal Form of RFP A is stored;\n\
* = 'T': The Transpose Form of RFP A is stored.\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* On entry, UPLO specifies whether the upper or lower\n\
* triangular part of the array C is to be referenced as\n\
* follows:\n\
*\n\
* UPLO = 'U' or 'u' Only the upper triangular part of C\n\
* is to be referenced.\n\
*\n\
* UPLO = 'L' or 'l' Only the lower triangular part of C\n\
* is to be referenced.\n\
*\n\
* Unchanged on exit.\n\
*\n\
* TRANS (input) CHARACTER*1\n\
* On entry, TRANS specifies the operation to be performed as\n\
* follows:\n\
*\n\
* TRANS = 'N' or 'n' C := alpha*A*A' + beta*C.\n\
*\n\
* TRANS = 'T' or 't' C := alpha*A'*A + beta*C.\n\
*\n\
* Unchanged on exit.\n\
*\n\
* N (input) INTEGER\n\
* On entry, N specifies the order of the matrix C. N must be\n\
* at least zero.\n\
* Unchanged on exit.\n\
*\n\
* K (input) INTEGER\n\
* On entry with TRANS = 'N' or 'n', K specifies the number\n\
* of columns of the matrix A, and on entry with TRANS = 'T'\n\
* or 't', K specifies the number of rows of the matrix A. K\n\
* must be at least zero.\n\
* Unchanged on exit.\n\
*\n\
* ALPHA (input) DOUBLE PRECISION\n\
* On entry, ALPHA specifies the scalar alpha.\n\
* Unchanged on exit.\n\
*\n\
* A (input) DOUBLE PRECISION array, dimension (LDA,ka)\n\
* where KA\n\
* is K when TRANS = 'N' or 'n', and is N otherwise. Before\n\
* entry with TRANS = 'N' or 'n', the leading N--by--K part of\n\
* the array A must contain the matrix A, otherwise the leading\n\
* K--by--N part of the array A must contain the matrix A.\n\
* Unchanged on exit.\n\
*\n\
* LDA (input) INTEGER\n\
* On entry, LDA specifies the first dimension of A as declared\n\
* in the calling (sub) program. When TRANS = 'N' or 'n'\n\
* then LDA must be at least max( 1, n ), otherwise LDA must\n\
* be at least max( 1, k ).\n\
* Unchanged on exit.\n\
*\n\
* BETA (input) DOUBLE PRECISION\n\
* On entry, BETA specifies the scalar beta.\n\
* Unchanged on exit.\n\
*\n\
*\n\
* C (input/output) DOUBLE PRECISION array, dimension (NT)\n\
* NT = N*(N+1)/2. On entry, the symmetric matrix C in RFP\n\
* Format. RFP Format is described by TRANSR, UPLO and N.\n\
*\n\
* Arguments\n\
* ==========\n\
*\n\
* ..\n"
|