1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
|
---
:name: dspev
:md5sum: abbf7fb1bb1c2e05e3a416106fd62a7b
:category: :subroutine
:arguments:
- jobz:
:type: char
:intent: input
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- ap:
:type: doublereal
:intent: input/output
:dims:
- ldap
- w:
:type: doublereal
:intent: output
:dims:
- n
- z:
:type: doublereal
:intent: output
:dims:
- ldz
- n
- ldz:
:type: integer
:intent: input
- work:
:type: doublereal
:intent: workspace
:dims:
- 3*n
- info:
:type: integer
:intent: output
:substitutions:
ldz: "lsame_(&jobz,\"V\") ? MAX(1,n) : 1"
n: ((int)sqrtf(ldap*8+1.0f)-1)/2
:fortran_help: " SUBROUTINE DSPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DSPEV computes all the eigenvalues and, optionally, eigenvectors of a\n\
* real symmetric matrix A in packed storage.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* JOBZ (input) CHARACTER*1\n\
* = 'N': Compute eigenvalues only;\n\
* = 'V': Compute eigenvalues and eigenvectors.\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': Upper triangle of A is stored;\n\
* = 'L': Lower triangle of A is stored.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)\n\
* On entry, the upper or lower triangle of the symmetric matrix\n\
* A, packed columnwise in a linear array. The j-th column of A\n\
* is stored in the array AP as follows:\n\
* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n\
* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.\n\
*\n\
* On exit, AP is overwritten by values generated during the\n\
* reduction to tridiagonal form. If UPLO = 'U', the diagonal\n\
* and first superdiagonal of the tridiagonal matrix T overwrite\n\
* the corresponding elements of A, and if UPLO = 'L', the\n\
* diagonal and first subdiagonal of T overwrite the\n\
* corresponding elements of A.\n\
*\n\
* W (output) DOUBLE PRECISION array, dimension (N)\n\
* If INFO = 0, the eigenvalues in ascending order.\n\
*\n\
* Z (output) DOUBLE PRECISION array, dimension (LDZ, N)\n\
* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal\n\
* eigenvectors of the matrix A, with the i-th column of Z\n\
* holding the eigenvector associated with W(i).\n\
* If JOBZ = 'N', then Z is not referenced.\n\
*\n\
* LDZ (input) INTEGER\n\
* The leading dimension of the array Z. LDZ >= 1, and if\n\
* JOBZ = 'V', LDZ >= max(1,N).\n\
*\n\
* WORK (workspace) DOUBLE PRECISION array, dimension (3*N)\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit.\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
* > 0: if INFO = i, the algorithm failed to converge; i\n\
* off-diagonal elements of an intermediate tridiagonal\n\
* form did not converge to zero.\n\
*\n\n\
* =====================================================================\n\
*\n"
|