1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
---
:name: dspgv
:md5sum: fa90c149e39cfb6acbcec1aec1f9ef15
:category: :subroutine
:arguments:
- itype:
:type: integer
:intent: input
- jobz:
:type: char
:intent: input
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- ap:
:type: doublereal
:intent: input/output
:dims:
- ldap
- bp:
:type: doublereal
:intent: input/output
:dims:
- n*(n+1)/2
- w:
:type: doublereal
:intent: output
:dims:
- n
- z:
:type: doublereal
:intent: output
:dims:
- ldz
- n
- ldz:
:type: integer
:intent: input
- work:
:type: doublereal
:intent: workspace
:dims:
- 3*n
- info:
:type: integer
:intent: output
:substitutions:
ldz: "lsame_(&jobz,\"V\") ? MAX(1,n) : 1"
n: ((int)sqrtf(ldap*8+1.0f)-1)/2
:fortran_help: " SUBROUTINE DSPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DSPGV computes all the eigenvalues and, optionally, the eigenvectors\n\
* of a real generalized symmetric-definite eigenproblem, of the form\n\
* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.\n\
* Here A and B are assumed to be symmetric, stored in packed format,\n\
* and B is also positive definite.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* ITYPE (input) INTEGER\n\
* Specifies the problem type to be solved:\n\
* = 1: A*x = (lambda)*B*x\n\
* = 2: A*B*x = (lambda)*x\n\
* = 3: B*A*x = (lambda)*x\n\
*\n\
* JOBZ (input) CHARACTER*1\n\
* = 'N': Compute eigenvalues only;\n\
* = 'V': Compute eigenvalues and eigenvectors.\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': Upper triangles of A and B are stored;\n\
* = 'L': Lower triangles of A and B are stored.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrices A and B. N >= 0.\n\
*\n\
* AP (input/output) DOUBLE PRECISION array, dimension\n\
* (N*(N+1)/2)\n\
* On entry, the upper or lower triangle of the symmetric matrix\n\
* A, packed columnwise in a linear array. The j-th column of A\n\
* is stored in the array AP as follows:\n\
* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n\
* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.\n\
*\n\
* On exit, the contents of AP are destroyed.\n\
*\n\
* BP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)\n\
* On entry, the upper or lower triangle of the symmetric matrix\n\
* B, packed columnwise in a linear array. The j-th column of B\n\
* is stored in the array BP as follows:\n\
* if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;\n\
* if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.\n\
*\n\
* On exit, the triangular factor U or L from the Cholesky\n\
* factorization B = U**T*U or B = L*L**T, in the same storage\n\
* format as B.\n\
*\n\
* W (output) DOUBLE PRECISION array, dimension (N)\n\
* If INFO = 0, the eigenvalues in ascending order.\n\
*\n\
* Z (output) DOUBLE PRECISION array, dimension (LDZ, N)\n\
* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of\n\
* eigenvectors. The eigenvectors are normalized as follows:\n\
* if ITYPE = 1 or 2, Z**T*B*Z = I;\n\
* if ITYPE = 3, Z**T*inv(B)*Z = I.\n\
* If JOBZ = 'N', then Z is not referenced.\n\
*\n\
* LDZ (input) INTEGER\n\
* The leading dimension of the array Z. LDZ >= 1, and if\n\
* JOBZ = 'V', LDZ >= max(1,N).\n\
*\n\
* WORK (workspace) DOUBLE PRECISION array, dimension (3*N)\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
* > 0: DPPTRF or DSPEV returned an error code:\n\
* <= N: if INFO = i, DSPEV failed to converge;\n\
* i off-diagonal elements of an intermediate\n\
* tridiagonal form did not converge to zero.\n\
* > N: if INFO = n + i, for 1 <= i <= n, then the leading\n\
* minor of order i of B is not positive definite.\n\
* The factorization of B could not be completed and\n\
* no eigenvalues or eigenvectors were computed.\n\
*\n\n\
* =====================================================================\n\
*\n\
* .. Local Scalars ..\n LOGICAL UPPER, WANTZ\n CHARACTER TRANS\n INTEGER J, NEIG\n\
* ..\n\
* .. External Functions ..\n LOGICAL LSAME\n EXTERNAL LSAME\n\
* ..\n\
* .. External Subroutines ..\n EXTERNAL DPPTRF, DSPEV, DSPGST, DTPMV, DTPSV, XERBLA\n\
* ..\n"
|