File: dspgv

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (139 lines) | stat: -rwxr-xr-x 5,120 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
--- 
:name: dspgv
:md5sum: fa90c149e39cfb6acbcec1aec1f9ef15
:category: :subroutine
:arguments: 
- itype: 
    :type: integer
    :intent: input
- jobz: 
    :type: char
    :intent: input
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- ap: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - ldap
- bp: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - n*(n+1)/2
- w: 
    :type: doublereal
    :intent: output
    :dims: 
    - n
- z: 
    :type: doublereal
    :intent: output
    :dims: 
    - ldz
    - n
- ldz: 
    :type: integer
    :intent: input
- work: 
    :type: doublereal
    :intent: workspace
    :dims: 
    - 3*n
- info: 
    :type: integer
    :intent: output
:substitutions: 
  ldz: "lsame_(&jobz,\"V\") ? MAX(1,n) : 1"
  n: ((int)sqrtf(ldap*8+1.0f)-1)/2
:fortran_help: "      SUBROUTINE DSPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DSPGV computes all the eigenvalues and, optionally, the eigenvectors\n\
  *  of a real generalized symmetric-definite eigenproblem, of the form\n\
  *  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.\n\
  *  Here A and B are assumed to be symmetric, stored in packed format,\n\
  *  and B is also positive definite.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  ITYPE   (input) INTEGER\n\
  *          Specifies the problem type to be solved:\n\
  *          = 1:  A*x = (lambda)*B*x\n\
  *          = 2:  A*B*x = (lambda)*x\n\
  *          = 3:  B*A*x = (lambda)*x\n\
  *\n\
  *  JOBZ    (input) CHARACTER*1\n\
  *          = 'N':  Compute eigenvalues only;\n\
  *          = 'V':  Compute eigenvalues and eigenvectors.\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          = 'U':  Upper triangles of A and B are stored;\n\
  *          = 'L':  Lower triangles of A and B are stored.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrices A and B.  N >= 0.\n\
  *\n\
  *  AP      (input/output) DOUBLE PRECISION array, dimension\n\
  *                            (N*(N+1)/2)\n\
  *          On entry, the upper or lower triangle of the symmetric matrix\n\
  *          A, packed columnwise in a linear array.  The j-th column of A\n\
  *          is stored in the array AP as follows:\n\
  *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n\
  *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.\n\
  *\n\
  *          On exit, the contents of AP are destroyed.\n\
  *\n\
  *  BP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)\n\
  *          On entry, the upper or lower triangle of the symmetric matrix\n\
  *          B, packed columnwise in a linear array.  The j-th column of B\n\
  *          is stored in the array BP as follows:\n\
  *          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;\n\
  *          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.\n\
  *\n\
  *          On exit, the triangular factor U or L from the Cholesky\n\
  *          factorization B = U**T*U or B = L*L**T, in the same storage\n\
  *          format as B.\n\
  *\n\
  *  W       (output) DOUBLE PRECISION array, dimension (N)\n\
  *          If INFO = 0, the eigenvalues in ascending order.\n\
  *\n\
  *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)\n\
  *          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of\n\
  *          eigenvectors.  The eigenvectors are normalized as follows:\n\
  *          if ITYPE = 1 or 2, Z**T*B*Z = I;\n\
  *          if ITYPE = 3, Z**T*inv(B)*Z = I.\n\
  *          If JOBZ = 'N', then Z is not referenced.\n\
  *\n\
  *  LDZ     (input) INTEGER\n\
  *          The leading dimension of the array Z.  LDZ >= 1, and if\n\
  *          JOBZ = 'V', LDZ >= max(1,N).\n\
  *\n\
  *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *          > 0:  DPPTRF or DSPEV returned an error code:\n\
  *             <= N:  if INFO = i, DSPEV failed to converge;\n\
  *                    i off-diagonal elements of an intermediate\n\
  *                    tridiagonal form did not converge to zero.\n\
  *             > N:   if INFO = n + i, for 1 <= i <= n, then the leading\n\
  *                    minor of order i of B is not positive definite.\n\
  *                    The factorization of B could not be completed and\n\
  *                    no eigenvalues or eigenvectors were computed.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n\
  *     .. Local Scalars ..\n      LOGICAL            UPPER, WANTZ\n      CHARACTER          TRANS\n      INTEGER            J, NEIG\n\
  *     ..\n\
  *     .. External Functions ..\n      LOGICAL            LSAME\n      EXTERNAL           LSAME\n\
  *     ..\n\
  *     .. External Subroutines ..\n      EXTERNAL           DPPTRF, DSPEV, DSPGST, DTPMV, DTPSV, XERBLA\n\
  *     ..\n"