1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
---
:name: dsposv
:md5sum: afe420b5c200deccb5aa7fc0f0c8cf39
:category: :subroutine
:arguments:
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- nrhs:
:type: integer
:intent: input
- a:
:type: doublereal
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- b:
:type: doublereal
:intent: input
:dims:
- ldb
- nrhs
- ldb:
:type: integer
:intent: input
- x:
:type: doublereal
:intent: output
:dims:
- ldx
- nrhs
- ldx:
:type: integer
:intent: input
- work:
:type: doublereal
:intent: workspace
:dims:
- n
- nrhs
- swork:
:type: real
:intent: workspace
:dims:
- n*(n+nrhs)
- iter:
:type: integer
:intent: output
- info:
:type: integer
:intent: output
:substitutions:
ldx: MAX(1,n)
:fortran_help: " SUBROUTINE DSPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK, SWORK, ITER, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DSPOSV computes the solution to a real system of linear equations\n\
* A * X = B,\n\
* where A is an N-by-N symmetric positive definite matrix and X and B\n\
* are N-by-NRHS matrices.\n\
*\n\
* DSPOSV first attempts to factorize the matrix in SINGLE PRECISION\n\
* and use this factorization within an iterative refinement procedure\n\
* to produce a solution with DOUBLE PRECISION normwise backward error\n\
* quality (see below). If the approach fails the method switches to a\n\
* DOUBLE PRECISION factorization and solve.\n\
*\n\
* The iterative refinement is not going to be a winning strategy if\n\
* the ratio SINGLE PRECISION performance over DOUBLE PRECISION\n\
* performance is too small. A reasonable strategy should take the\n\
* number of right-hand sides and the size of the matrix into account.\n\
* This might be done with a call to ILAENV in the future. Up to now, we\n\
* always try iterative refinement.\n\
*\n\
* The iterative refinement process is stopped if\n\
* ITER > ITERMAX\n\
* or for all the RHS we have:\n\
* RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX\n\
* where\n\
* o ITER is the number of the current iteration in the iterative\n\
* refinement process\n\
* o RNRM is the infinity-norm of the residual\n\
* o XNRM is the infinity-norm of the solution\n\
* o ANRM is the infinity-operator-norm of the matrix A\n\
* o EPS is the machine epsilon returned by DLAMCH('Epsilon')\n\
* The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00\n\
* respectively.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': Upper triangle of A is stored;\n\
* = 'L': Lower triangle of A is stored.\n\
*\n\
* N (input) INTEGER\n\
* The number of linear equations, i.e., the order of the\n\
* matrix A. N >= 0.\n\
*\n\
* NRHS (input) INTEGER\n\
* The number of right hand sides, i.e., the number of columns\n\
* of the matrix B. NRHS >= 0.\n\
*\n\
* A (input/output) DOUBLE PRECISION array,\n\
* dimension (LDA,N)\n\
* On entry, the symmetric matrix A. If UPLO = 'U', the leading\n\
* N-by-N upper triangular part of A contains the upper\n\
* triangular part of the matrix A, and the strictly lower\n\
* triangular part of A is not referenced. If UPLO = 'L', the\n\
* leading N-by-N lower triangular part of A contains the lower\n\
* triangular part of the matrix A, and the strictly upper\n\
* triangular part of A is not referenced.\n\
* On exit, if iterative refinement has been successfully used\n\
* (INFO.EQ.0 and ITER.GE.0, see description below), then A is\n\
* unchanged, if double precision factorization has been used\n\
* (INFO.EQ.0 and ITER.LT.0, see description below), then the\n\
* array A contains the factor U or L from the Cholesky\n\
* factorization A = U**T*U or A = L*L**T.\n\
*\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)\n\
* The N-by-NRHS right hand side matrix B.\n\
*\n\
* LDB (input) INTEGER\n\
* The leading dimension of the array B. LDB >= max(1,N).\n\
*\n\
* X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)\n\
* If INFO = 0, the N-by-NRHS solution matrix X.\n\
*\n\
* LDX (input) INTEGER\n\
* The leading dimension of the array X. LDX >= max(1,N).\n\
*\n\
* WORK (workspace) DOUBLE PRECISION array, dimension (N,NRHS)\n\
* This array is used to hold the residual vectors.\n\
*\n\
* SWORK (workspace) REAL array, dimension (N*(N+NRHS))\n\
* This array is used to use the single precision matrix and the\n\
* right-hand sides or solutions in single precision.\n\
*\n\
* ITER (output) INTEGER\n\
* < 0: iterative refinement has failed, double precision\n\
* factorization has been performed\n\
* -1 : the routine fell back to full precision for\n\
* implementation- or machine-specific reasons\n\
* -2 : narrowing the precision induced an overflow,\n\
* the routine fell back to full precision\n\
* -3 : failure of SPOTRF\n\
* -31: stop the iterative refinement after the 30th\n\
* iterations\n\
* > 0: iterative refinement has been successfully used.\n\
* Returns the number of iterations\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
* > 0: if INFO = i, the leading minor of order i of (DOUBLE\n\
* PRECISION) A is not positive definite, so the\n\
* factorization could not be completed, and the solution\n\
* has not been computed.\n\
*\n\
* =========\n\
*\n"
|