File: dstev

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (88 lines) | stat: -rwxr-xr-x 2,755 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
--- 
:name: dstev
:md5sum: 2f4d636a27f6e1a3441dbd47afa973cb
:category: :subroutine
:arguments: 
- jobz: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- d: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - n
- e: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - n-1
- z: 
    :type: doublereal
    :intent: output
    :dims: 
    - ldz
    - n
- ldz: 
    :type: integer
    :intent: input
- work: 
    :type: doublereal
    :intent: workspace
    :dims: 
    - "lsame_(&jobz,\"N\") ? 0 : MAX(1,2*n-2)"
- info: 
    :type: integer
    :intent: output
:substitutions: 
  ldz: "lsame_(&jobz,\"V\") ? MAX(1,n) : 1"
:fortran_help: "      SUBROUTINE DSTEV( JOBZ, N, D, E, Z, LDZ, WORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DSTEV computes all eigenvalues and, optionally, eigenvectors of a\n\
  *  real symmetric tridiagonal matrix A.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  JOBZ    (input) CHARACTER*1\n\
  *          = 'N':  Compute eigenvalues only;\n\
  *          = 'V':  Compute eigenvalues and eigenvectors.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix.  N >= 0.\n\
  *\n\
  *  D       (input/output) DOUBLE PRECISION array, dimension (N)\n\
  *          On entry, the n diagonal elements of the tridiagonal matrix\n\
  *          A.\n\
  *          On exit, if INFO = 0, the eigenvalues in ascending order.\n\
  *\n\
  *  E       (input/output) DOUBLE PRECISION array, dimension (N-1)\n\
  *          On entry, the (n-1) subdiagonal elements of the tridiagonal\n\
  *          matrix A, stored in elements 1 to N-1 of E.\n\
  *          On exit, the contents of E are destroyed.\n\
  *\n\
  *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)\n\
  *          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal\n\
  *          eigenvectors of the matrix A, with the i-th column of Z\n\
  *          holding the eigenvector associated with D(i).\n\
  *          If JOBZ = 'N', then Z is not referenced.\n\
  *\n\
  *  LDZ     (input) INTEGER\n\
  *          The leading dimension of the array Z.  LDZ >= 1, and if\n\
  *          JOBZ = 'V', LDZ >= max(1,N).\n\
  *\n\
  *  WORK    (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))\n\
  *          If JOBZ = 'N', WORK is not referenced.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *          > 0:  if INFO = i, the algorithm failed to converge; i\n\
  *                off-diagonal elements of E did not converge to zero.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"