1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
---
:name: dtgevc
:md5sum: 05c0ef877f01207c516547bdc1379d50
:category: :subroutine
:arguments:
- side:
:type: char
:intent: input
- howmny:
:type: char
:intent: input
- select:
:type: logical
:intent: input
:dims:
- n
- n:
:type: integer
:intent: input
- s:
:type: doublereal
:intent: input
:dims:
- lds
- n
- lds:
:type: integer
:intent: input
- p:
:type: doublereal
:intent: input
:dims:
- ldp
- n
- ldp:
:type: integer
:intent: input
- vl:
:type: doublereal
:intent: input/output
:dims:
- ldvl
- mm
- ldvl:
:type: integer
:intent: input
- vr:
:type: doublereal
:intent: input/output
:dims:
- ldvr
- mm
- ldvr:
:type: integer
:intent: input
- mm:
:type: integer
:intent: input
- m:
:type: integer
:intent: output
- work:
:type: doublereal
:intent: workspace
:dims:
- 6*n
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE DTGEVC( SIDE, HOWMNY, SELECT, N, S, LDS, P, LDP, VL, LDVL, VR, LDVR, MM, M, WORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DTGEVC computes some or all of the right and/or left eigenvectors of\n\
* a pair of real matrices (S,P), where S is a quasi-triangular matrix\n\
* and P is upper triangular. Matrix pairs of this type are produced by\n\
* the generalized Schur factorization of a matrix pair (A,B):\n\
*\n\
* A = Q*S*Z**T, B = Q*P*Z**T\n\
*\n\
* as computed by DGGHRD + DHGEQZ.\n\
*\n\
* The right eigenvector x and the left eigenvector y of (S,P)\n\
* corresponding to an eigenvalue w are defined by:\n\
* \n\
* S*x = w*P*x, (y**H)*S = w*(y**H)*P,\n\
* \n\
* where y**H denotes the conjugate tranpose of y.\n\
* The eigenvalues are not input to this routine, but are computed\n\
* directly from the diagonal blocks of S and P.\n\
* \n\
* This routine returns the matrices X and/or Y of right and left\n\
* eigenvectors of (S,P), or the products Z*X and/or Q*Y,\n\
* where Z and Q are input matrices.\n\
* If Q and Z are the orthogonal factors from the generalized Schur\n\
* factorization of a matrix pair (A,B), then Z*X and Q*Y\n\
* are the matrices of right and left eigenvectors of (A,B).\n\
* \n\n\
* Arguments\n\
* =========\n\
*\n\
* SIDE (input) CHARACTER*1\n\
* = 'R': compute right eigenvectors only;\n\
* = 'L': compute left eigenvectors only;\n\
* = 'B': compute both right and left eigenvectors.\n\
*\n\
* HOWMNY (input) CHARACTER*1\n\
* = 'A': compute all right and/or left eigenvectors;\n\
* = 'B': compute all right and/or left eigenvectors,\n\
* backtransformed by the matrices in VR and/or VL;\n\
* = 'S': compute selected right and/or left eigenvectors,\n\
* specified by the logical array SELECT.\n\
*\n\
* SELECT (input) LOGICAL array, dimension (N)\n\
* If HOWMNY='S', SELECT specifies the eigenvectors to be\n\
* computed. If w(j) is a real eigenvalue, the corresponding\n\
* real eigenvector is computed if SELECT(j) is .TRUE..\n\
* If w(j) and w(j+1) are the real and imaginary parts of a\n\
* complex eigenvalue, the corresponding complex eigenvector\n\
* is computed if either SELECT(j) or SELECT(j+1) is .TRUE.,\n\
* and on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is\n\
* set to .FALSE..\n\
* Not referenced if HOWMNY = 'A' or 'B'.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrices S and P. N >= 0.\n\
*\n\
* S (input) DOUBLE PRECISION array, dimension (LDS,N)\n\
* The upper quasi-triangular matrix S from a generalized Schur\n\
* factorization, as computed by DHGEQZ.\n\
*\n\
* LDS (input) INTEGER\n\
* The leading dimension of array S. LDS >= max(1,N).\n\
*\n\
* P (input) DOUBLE PRECISION array, dimension (LDP,N)\n\
* The upper triangular matrix P from a generalized Schur\n\
* factorization, as computed by DHGEQZ.\n\
* 2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks\n\
* of S must be in positive diagonal form.\n\
*\n\
* LDP (input) INTEGER\n\
* The leading dimension of array P. LDP >= max(1,N).\n\
*\n\
* VL (input/output) DOUBLE PRECISION array, dimension (LDVL,MM)\n\
* On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must\n\
* contain an N-by-N matrix Q (usually the orthogonal matrix Q\n\
* of left Schur vectors returned by DHGEQZ).\n\
* On exit, if SIDE = 'L' or 'B', VL contains:\n\
* if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P);\n\
* if HOWMNY = 'B', the matrix Q*Y;\n\
* if HOWMNY = 'S', the left eigenvectors of (S,P) specified by\n\
* SELECT, stored consecutively in the columns of\n\
* VL, in the same order as their eigenvalues.\n\
*\n\
* A complex eigenvector corresponding to a complex eigenvalue\n\
* is stored in two consecutive columns, the first holding the\n\
* real part, and the second the imaginary part.\n\
*\n\
* Not referenced if SIDE = 'R'.\n\
*\n\
* LDVL (input) INTEGER\n\
* The leading dimension of array VL. LDVL >= 1, and if\n\
* SIDE = 'L' or 'B', LDVL >= N.\n\
*\n\
* VR (input/output) DOUBLE PRECISION array, dimension (LDVR,MM)\n\
* On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must\n\
* contain an N-by-N matrix Z (usually the orthogonal matrix Z\n\
* of right Schur vectors returned by DHGEQZ).\n\
*\n\
* On exit, if SIDE = 'R' or 'B', VR contains:\n\
* if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P);\n\
* if HOWMNY = 'B' or 'b', the matrix Z*X;\n\
* if HOWMNY = 'S' or 's', the right eigenvectors of (S,P)\n\
* specified by SELECT, stored consecutively in the\n\
* columns of VR, in the same order as their\n\
* eigenvalues.\n\
*\n\
* A complex eigenvector corresponding to a complex eigenvalue\n\
* is stored in two consecutive columns, the first holding the\n\
* real part and the second the imaginary part.\n\
* \n\
* Not referenced if SIDE = 'L'.\n\
*\n\
* LDVR (input) INTEGER\n\
* The leading dimension of the array VR. LDVR >= 1, and if\n\
* SIDE = 'R' or 'B', LDVR >= N.\n\
*\n\
* MM (input) INTEGER\n\
* The number of columns in the arrays VL and/or VR. MM >= M.\n\
*\n\
* M (output) INTEGER\n\
* The number of columns in the arrays VL and/or VR actually\n\
* used to store the eigenvectors. If HOWMNY = 'A' or 'B', M\n\
* is set to N. Each selected real eigenvector occupies one\n\
* column and each selected complex eigenvector occupies two\n\
* columns.\n\
*\n\
* WORK (workspace) DOUBLE PRECISION array, dimension (6*N)\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit.\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
* > 0: the 2-by-2 block (INFO:INFO+1) does not have a complex\n\
* eigenvalue.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* Allocation of workspace:\n\
* ---------- -- ---------\n\
*\n\
* WORK( j ) = 1-norm of j-th column of A, above the diagonal\n\
* WORK( N+j ) = 1-norm of j-th column of B, above the diagonal\n\
* WORK( 2*N+1:3*N ) = real part of eigenvector\n\
* WORK( 3*N+1:4*N ) = imaginary part of eigenvector\n\
* WORK( 4*N+1:5*N ) = real part of back-transformed eigenvector\n\
* WORK( 5*N+1:6*N ) = imaginary part of back-transformed eigenvector\n\
*\n\
* Rowwise vs. columnwise solution methods:\n\
* ------- -- ---------- -------- -------\n\
*\n\
* Finding a generalized eigenvector consists basically of solving the\n\
* singular triangular system\n\
*\n\
* (A - w B) x = 0 (for right) or: (A - w B)**H y = 0 (for left)\n\
*\n\
* Consider finding the i-th right eigenvector (assume all eigenvalues\n\
* are real). The equation to be solved is:\n\
* n i\n\
* 0 = sum C(j,k) v(k) = sum C(j,k) v(k) for j = i,. . .,1\n\
* k=j k=j\n\
*\n\
* where C = (A - w B) (The components v(i+1:n) are 0.)\n\
*\n\
* The \"rowwise\" method is:\n\
*\n\
* (1) v(i) := 1\n\
* for j = i-1,. . .,1:\n\
* i\n\
* (2) compute s = - sum C(j,k) v(k) and\n\
* k=j+1\n\
*\n\
* (3) v(j) := s / C(j,j)\n\
*\n\
* Step 2 is sometimes called the \"dot product\" step, since it is an\n\
* inner product between the j-th row and the portion of the eigenvector\n\
* that has been computed so far.\n\
*\n\
* The \"columnwise\" method consists basically in doing the sums\n\
* for all the rows in parallel. As each v(j) is computed, the\n\
* contribution of v(j) times the j-th column of C is added to the\n\
* partial sums. Since FORTRAN arrays are stored columnwise, this has\n\
* the advantage that at each step, the elements of C that are accessed\n\
* are adjacent to one another, whereas with the rowwise method, the\n\
* elements accessed at a step are spaced LDS (and LDP) words apart.\n\
*\n\
* When finding left eigenvectors, the matrix in question is the\n\
* transpose of the one in storage, so the rowwise method then\n\
* actually accesses columns of A and B at each step, and so is the\n\
* preferred method.\n\
*\n\
* =====================================================================\n\
*\n"
|