1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
---
:name: dtprfs
:md5sum: 6ebdcf9618f401dd3cc557634f2c0b07
:category: :subroutine
:arguments:
- uplo:
:type: char
:intent: input
- trans:
:type: char
:intent: input
- diag:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- nrhs:
:type: integer
:intent: input
- ap:
:type: doublereal
:intent: input
:dims:
- n*(n+1)/2
- b:
:type: doublereal
:intent: input
:dims:
- ldb
- nrhs
- ldb:
:type: integer
:intent: input
- x:
:type: doublereal
:intent: input
:dims:
- ldx
- nrhs
- ldx:
:type: integer
:intent: input
- ferr:
:type: doublereal
:intent: output
:dims:
- nrhs
- berr:
:type: doublereal
:intent: output
:dims:
- nrhs
- work:
:type: doublereal
:intent: workspace
:dims:
- 3*n
- iwork:
:type: integer
:intent: workspace
:dims:
- n
- info:
:type: integer
:intent: output
:substitutions:
n: ldb
:fortran_help: " SUBROUTINE DTPRFS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DTPRFS provides error bounds and backward error estimates for the\n\
* solution to a system of linear equations with a triangular packed\n\
* coefficient matrix.\n\
*\n\
* The solution matrix X must be computed by DTPTRS or some other\n\
* means before entering this routine. DTPRFS does not do iterative\n\
* refinement because doing so cannot improve the backward error.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': A is upper triangular;\n\
* = 'L': A is lower triangular.\n\
*\n\
* TRANS (input) CHARACTER*1\n\
* Specifies the form of the system of equations:\n\
* = 'N': A * X = B (No transpose)\n\
* = 'T': A**T * X = B (Transpose)\n\
* = 'C': A**H * X = B (Conjugate transpose = Transpose)\n\
*\n\
* DIAG (input) CHARACTER*1\n\
* = 'N': A is non-unit triangular;\n\
* = 'U': A is unit triangular.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* NRHS (input) INTEGER\n\
* The number of right hand sides, i.e., the number of columns\n\
* of the matrices B and X. NRHS >= 0.\n\
*\n\
* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)\n\
* The upper or lower triangular matrix A, packed columnwise in\n\
* a linear array. The j-th column of A is stored in the array\n\
* AP as follows:\n\
* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n\
* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.\n\
* If DIAG = 'U', the diagonal elements of A are not referenced\n\
* and are assumed to be 1.\n\
*\n\
* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)\n\
* The right hand side matrix B.\n\
*\n\
* LDB (input) INTEGER\n\
* The leading dimension of the array B. LDB >= max(1,N).\n\
*\n\
* X (input) DOUBLE PRECISION array, dimension (LDX,NRHS)\n\
* The solution matrix X.\n\
*\n\
* LDX (input) INTEGER\n\
* The leading dimension of the array X. LDX >= max(1,N).\n\
*\n\
* FERR (output) DOUBLE PRECISION array, dimension (NRHS)\n\
* The estimated forward error bound for each solution vector\n\
* X(j) (the j-th column of the solution matrix X).\n\
* If XTRUE is the true solution corresponding to X(j), FERR(j)\n\
* is an estimated upper bound for the magnitude of the largest\n\
* element in (X(j) - XTRUE) divided by the magnitude of the\n\
* largest element in X(j). The estimate is as reliable as\n\
* the estimate for RCOND, and is almost always a slight\n\
* overestimate of the true error.\n\
*\n\
* BERR (output) DOUBLE PRECISION array, dimension (NRHS)\n\
* The componentwise relative backward error of each solution\n\
* vector X(j) (i.e., the smallest relative change in\n\
* any element of A or B that makes X(j) an exact solution).\n\
*\n\
* WORK (workspace) DOUBLE PRECISION array, dimension (3*N)\n\
*\n\
* IWORK (workspace) INTEGER array, dimension (N)\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
*\n\n\
* =====================================================================\n\
*\n"
|