File: dtrtri

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (75 lines) | stat: -rwxr-xr-x 2,432 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
--- 
:name: dtrtri
:md5sum: 8441a50f1dc21d4959daa59006cdb017
:category: :subroutine
:arguments: 
- uplo: 
    :type: char
    :intent: input
- diag: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE DTRTRI( UPLO, DIAG, N, A, LDA, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DTRTRI computes the inverse of a real upper or lower triangular\n\
  *  matrix A.\n\
  *\n\
  *  This is the Level 3 BLAS version of the algorithm.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          = 'U':  A is upper triangular;\n\
  *          = 'L':  A is lower triangular.\n\
  *\n\
  *  DIAG    (input) CHARACTER*1\n\
  *          = 'N':  A is non-unit triangular;\n\
  *          = 'U':  A is unit triangular.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.\n\
  *\n\
  *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)\n\
  *          On entry, the triangular matrix A.  If UPLO = 'U', the\n\
  *          leading N-by-N upper triangular part of the array A contains\n\
  *          the upper triangular matrix, and the strictly lower\n\
  *          triangular part of A is not referenced.  If UPLO = 'L', the\n\
  *          leading N-by-N lower triangular part of the array A contains\n\
  *          the lower triangular matrix, and the strictly upper\n\
  *          triangular part of A is not referenced.  If DIAG = 'U', the\n\
  *          diagonal elements of A are also not referenced and are\n\
  *          assumed to be 1.\n\
  *          On exit, the (triangular) inverse of the original matrix, in\n\
  *          the same storage format.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,N).\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0: successful exit\n\
  *          < 0: if INFO = -i, the i-th argument had an illegal value\n\
  *          > 0: if INFO = i, A(i,i) is exactly zero.  The triangular\n\
  *               matrix is singular and its inverse can not be computed.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"