1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
---
:name: sbdsdc
:md5sum: 363562a2bf0038c64910ac814e09f1c7
:category: :subroutine
:arguments:
- uplo:
:type: char
:intent: input
- compq:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- d:
:type: real
:intent: input/output
:dims:
- n
- e:
:type: real
:intent: input/output
:dims:
- n-1
- u:
:type: real
:intent: output
:dims:
- "lsame_(&compq,\"I\") ? ldu : 0"
- "lsame_(&compq,\"I\") ? n : 0"
- ldu:
:type: integer
:intent: input
- vt:
:type: real
:intent: output
:dims:
- "lsame_(&compq,\"I\") ? ldvt : 0"
- "lsame_(&compq,\"I\") ? n : 0"
- ldvt:
:type: integer
:intent: input
- q:
:type: real
:intent: output
:dims:
- "lsame_(&compq,\"I\") ? ldq : 0"
- iq:
:type: integer
:intent: output
:dims:
- "lsame_(&compq,\"I\") ? ldiq : 0"
- work:
:type: real
:intent: workspace
:dims:
- MAX(1,lwork)
- iwork:
:type: integer
:intent: workspace
:dims:
- 8*n
- info:
:type: integer
:intent: output
:substitutions:
c__9: "9"
c__0: "0"
ldq: "lsame_(&compq,\"P\") ? n*(11+2*smlsiz+8*(int)(log(((double)n)/(smlsiz+1))/log(2.0))) : 0"
ldvt: "lsame_(&compq,\"I\") ? MAX(1,n) : 0"
ldiq: "lsame_(&compq,\"P\") ? n*(3+3*(int)(log(((double)n)/(smlsiz+1))/log(2.0))) : 0"
lwork: "lsame_(&compq,\"N\") ? 4*n : lsame_(&compq,\"P\") ? 6*n : lsame_(&compq,\"I\") ? 3*n*n+4*n : 0"
ldu: "lsame_(&compq,\"I\") ? MAX(1,n) : 0"
smlsiz: ilaenv_(&c__9, "SBDSDC", " ", &c__0, &c__0, &c__0, &c__0)
:fortran_help: " SUBROUTINE SBDSDC( UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ, WORK, IWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* SBDSDC computes the singular value decomposition (SVD) of a real\n\
* N-by-N (upper or lower) bidiagonal matrix B: B = U * S * VT,\n\
* using a divide and conquer method, where S is a diagonal matrix\n\
* with non-negative diagonal elements (the singular values of B), and\n\
* U and VT are orthogonal matrices of left and right singular vectors,\n\
* respectively. SBDSDC can be used to compute all singular values,\n\
* and optionally, singular vectors or singular vectors in compact form.\n\
*\n\
* This code makes very mild assumptions about floating point\n\
* arithmetic. It will work on machines with a guard digit in\n\
* add/subtract, or on those binary machines without guard digits\n\
* which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.\n\
* It could conceivably fail on hexadecimal or decimal machines\n\
* without guard digits, but we know of none. See SLASD3 for details.\n\
*\n\
* The code currently calls SLASDQ if singular values only are desired.\n\
* However, it can be slightly modified to compute singular values\n\
* using the divide and conquer method.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': B is upper bidiagonal.\n\
* = 'L': B is lower bidiagonal.\n\
*\n\
* COMPQ (input) CHARACTER*1\n\
* Specifies whether singular vectors are to be computed\n\
* as follows:\n\
* = 'N': Compute singular values only;\n\
* = 'P': Compute singular values and compute singular\n\
* vectors in compact form;\n\
* = 'I': Compute singular values and singular vectors.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix B. N >= 0.\n\
*\n\
* D (input/output) REAL array, dimension (N)\n\
* On entry, the n diagonal elements of the bidiagonal matrix B.\n\
* On exit, if INFO=0, the singular values of B.\n\
*\n\
* E (input/output) REAL array, dimension (N-1)\n\
* On entry, the elements of E contain the offdiagonal\n\
* elements of the bidiagonal matrix whose SVD is desired.\n\
* On exit, E has been destroyed.\n\
*\n\
* U (output) REAL array, dimension (LDU,N)\n\
* If COMPQ = 'I', then:\n\
* On exit, if INFO = 0, U contains the left singular vectors\n\
* of the bidiagonal matrix.\n\
* For other values of COMPQ, U is not referenced.\n\
*\n\
* LDU (input) INTEGER\n\
* The leading dimension of the array U. LDU >= 1.\n\
* If singular vectors are desired, then LDU >= max( 1, N ).\n\
*\n\
* VT (output) REAL array, dimension (LDVT,N)\n\
* If COMPQ = 'I', then:\n\
* On exit, if INFO = 0, VT' contains the right singular\n\
* vectors of the bidiagonal matrix.\n\
* For other values of COMPQ, VT is not referenced.\n\
*\n\
* LDVT (input) INTEGER\n\
* The leading dimension of the array VT. LDVT >= 1.\n\
* If singular vectors are desired, then LDVT >= max( 1, N ).\n\
*\n\
* Q (output) REAL array, dimension (LDQ)\n\
* If COMPQ = 'P', then:\n\
* On exit, if INFO = 0, Q and IQ contain the left\n\
* and right singular vectors in a compact form,\n\
* requiring O(N log N) space instead of 2*N**2.\n\
* In particular, Q contains all the REAL data in\n\
* LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1))))\n\
* words of memory, where SMLSIZ is returned by ILAENV and\n\
* is equal to the maximum size of the subproblems at the\n\
* bottom of the computation tree (usually about 25).\n\
* For other values of COMPQ, Q is not referenced.\n\
*\n\
* IQ (output) INTEGER array, dimension (LDIQ)\n\
* If COMPQ = 'P', then:\n\
* On exit, if INFO = 0, Q and IQ contain the left\n\
* and right singular vectors in a compact form,\n\
* requiring O(N log N) space instead of 2*N**2.\n\
* In particular, IQ contains all INTEGER data in\n\
* LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1))))\n\
* words of memory, where SMLSIZ is returned by ILAENV and\n\
* is equal to the maximum size of the subproblems at the\n\
* bottom of the computation tree (usually about 25).\n\
* For other values of COMPQ, IQ is not referenced.\n\
*\n\
* WORK (workspace) REAL array, dimension (MAX(1,LWORK))\n\
* If COMPQ = 'N' then LWORK >= (4 * N).\n\
* If COMPQ = 'P' then LWORK >= (6 * N).\n\
* If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N).\n\
*\n\
* IWORK (workspace) INTEGER array, dimension (8*N)\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit.\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
* > 0: The algorithm failed to compute a singular value.\n\
* The update process of divide and conquer failed.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* Based on contributions by\n\
* Ming Gu and Huan Ren, Computer Science Division, University of\n\
* California at Berkeley, USA\n\
* =====================================================================\n\
* Changed dimension statement in comment describing E from (N) to\n\
* (N-1). Sven, 17 Feb 05.\n\
* =====================================================================\n\
*\n"
|