1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
---
:name: sgeevx
:md5sum: def8c51083d6025e43422c29fe495dfd
:category: :subroutine
:arguments:
- balanc:
:type: char
:intent: input
- jobvl:
:type: char
:intent: input
- jobvr:
:type: char
:intent: input
- sense:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: real
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- wr:
:type: real
:intent: output
:dims:
- n
- wi:
:type: real
:intent: output
:dims:
- n
- vl:
:type: real
:intent: output
:dims:
- ldvl
- n
- ldvl:
:type: integer
:intent: input
- vr:
:type: real
:intent: output
:dims:
- ldvr
- n
- ldvr:
:type: integer
:intent: input
- ilo:
:type: integer
:intent: output
- ihi:
:type: integer
:intent: output
- scale:
:type: real
:intent: output
:dims:
- n
- abnrm:
:type: real
:intent: output
- rconde:
:type: real
:intent: output
:dims:
- n
- rcondv:
:type: real
:intent: output
:dims:
- n
- work:
:type: real
:intent: output
:dims:
- MAX(1,lwork)
- lwork:
:type: integer
:intent: input
:option: true
:default: "(lsame_(&sense,\"N\")||lsame_(&sense,\"E\")) ? 2*n : (lsame_(&jobvl,\"V\")||lsame_(&jobvr,\"V\")) ? 3*n : (lsame_(&sense,\"V\")||lsame_(&sense,\"B\")) ? n*(n+6) : 0"
- iwork:
:type: integer
:intent: workspace
:dims:
- "(lsame_(&sense,\"N\")||lsame_(&sense,\"E\")) ? 0 : 2*n-2"
- info:
:type: integer
:intent: output
:substitutions:
ldvr: "lsame_(&jobvr,\"V\") ? n : 1"
ldvl: "lsame_(&jobvl,\"V\") ? n : 1"
:fortran_help: " SUBROUTINE SGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI, VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE, RCONDV, WORK, LWORK, IWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* SGEEVX computes for an N-by-N real nonsymmetric matrix A, the\n\
* eigenvalues and, optionally, the left and/or right eigenvectors.\n\
*\n\
* Optionally also, it computes a balancing transformation to improve\n\
* the conditioning of the eigenvalues and eigenvectors (ILO, IHI,\n\
* SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues\n\
* (RCONDE), and reciprocal condition numbers for the right\n\
* eigenvectors (RCONDV).\n\
*\n\
* The right eigenvector v(j) of A satisfies\n\
* A * v(j) = lambda(j) * v(j)\n\
* where lambda(j) is its eigenvalue.\n\
* The left eigenvector u(j) of A satisfies\n\
* u(j)**H * A = lambda(j) * u(j)**H\n\
* where u(j)**H denotes the conjugate transpose of u(j).\n\
*\n\
* The computed eigenvectors are normalized to have Euclidean norm\n\
* equal to 1 and largest component real.\n\
*\n\
* Balancing a matrix means permuting the rows and columns to make it\n\
* more nearly upper triangular, and applying a diagonal similarity\n\
* transformation D * A * D**(-1), where D is a diagonal matrix, to\n\
* make its rows and columns closer in norm and the condition numbers\n\
* of its eigenvalues and eigenvectors smaller. The computed\n\
* reciprocal condition numbers correspond to the balanced matrix.\n\
* Permuting rows and columns will not change the condition numbers\n\
* (in exact arithmetic) but diagonal scaling will. For further\n\
* explanation of balancing, see section 4.10.2 of the LAPACK\n\
* Users' Guide.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* BALANC (input) CHARACTER*1\n\
* Indicates how the input matrix should be diagonally scaled\n\
* and/or permuted to improve the conditioning of its\n\
* eigenvalues.\n\
* = 'N': Do not diagonally scale or permute;\n\
* = 'P': Perform permutations to make the matrix more nearly\n\
* upper triangular. Do not diagonally scale;\n\
* = 'S': Diagonally scale the matrix, i.e. replace A by\n\
* D*A*D**(-1), where D is a diagonal matrix chosen\n\
* to make the rows and columns of A more equal in\n\
* norm. Do not permute;\n\
* = 'B': Both diagonally scale and permute A.\n\
*\n\
* Computed reciprocal condition numbers will be for the matrix\n\
* after balancing and/or permuting. Permuting does not change\n\
* condition numbers (in exact arithmetic), but balancing does.\n\
*\n\
* JOBVL (input) CHARACTER*1\n\
* = 'N': left eigenvectors of A are not computed;\n\
* = 'V': left eigenvectors of A are computed.\n\
* If SENSE = 'E' or 'B', JOBVL must = 'V'.\n\
*\n\
* JOBVR (input) CHARACTER*1\n\
* = 'N': right eigenvectors of A are not computed;\n\
* = 'V': right eigenvectors of A are computed.\n\
* If SENSE = 'E' or 'B', JOBVR must = 'V'.\n\
*\n\
* SENSE (input) CHARACTER*1\n\
* Determines which reciprocal condition numbers are computed.\n\
* = 'N': None are computed;\n\
* = 'E': Computed for eigenvalues only;\n\
* = 'V': Computed for right eigenvectors only;\n\
* = 'B': Computed for eigenvalues and right eigenvectors.\n\
*\n\
* If SENSE = 'E' or 'B', both left and right eigenvectors\n\
* must also be computed (JOBVL = 'V' and JOBVR = 'V').\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* A (input/output) REAL array, dimension (LDA,N)\n\
* On entry, the N-by-N matrix A.\n\
* On exit, A has been overwritten. If JOBVL = 'V' or\n\
* JOBVR = 'V', A contains the real Schur form of the balanced\n\
* version of the input matrix A.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* WR (output) REAL array, dimension (N)\n\
* WI (output) REAL array, dimension (N)\n\
* WR and WI contain the real and imaginary parts,\n\
* respectively, of the computed eigenvalues. Complex\n\
* conjugate pairs of eigenvalues will appear consecutively\n\
* with the eigenvalue having the positive imaginary part\n\
* first.\n\
*\n\
* VL (output) REAL array, dimension (LDVL,N)\n\
* If JOBVL = 'V', the left eigenvectors u(j) are stored one\n\
* after another in the columns of VL, in the same order\n\
* as their eigenvalues.\n\
* If JOBVL = 'N', VL is not referenced.\n\
* If the j-th eigenvalue is real, then u(j) = VL(:,j),\n\
* the j-th column of VL.\n\
* If the j-th and (j+1)-st eigenvalues form a complex\n\
* conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and\n\
* u(j+1) = VL(:,j) - i*VL(:,j+1).\n\
*\n\
* LDVL (input) INTEGER\n\
* The leading dimension of the array VL. LDVL >= 1; if\n\
* JOBVL = 'V', LDVL >= N.\n\
*\n\
* VR (output) REAL array, dimension (LDVR,N)\n\
* If JOBVR = 'V', the right eigenvectors v(j) are stored one\n\
* after another in the columns of VR, in the same order\n\
* as their eigenvalues.\n\
* If JOBVR = 'N', VR is not referenced.\n\
* If the j-th eigenvalue is real, then v(j) = VR(:,j),\n\
* the j-th column of VR.\n\
* If the j-th and (j+1)-st eigenvalues form a complex\n\
* conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and\n\
* v(j+1) = VR(:,j) - i*VR(:,j+1).\n\
*\n\
* LDVR (input) INTEGER\n\
* The leading dimension of the array VR. LDVR >= 1, and if\n\
* JOBVR = 'V', LDVR >= N.\n\
*\n\
* ILO (output) INTEGER\n\
* IHI (output) INTEGER\n\
* ILO and IHI are integer values determined when A was\n\
* balanced. The balanced A(i,j) = 0 if I > J and \n\
* J = 1,...,ILO-1 or I = IHI+1,...,N.\n\
*\n\
* SCALE (output) REAL array, dimension (N)\n\
* Details of the permutations and scaling factors applied\n\
* when balancing A. If P(j) is the index of the row and column\n\
* interchanged with row and column j, and D(j) is the scaling\n\
* factor applied to row and column j, then\n\
* SCALE(J) = P(J), for J = 1,...,ILO-1\n\
* = D(J), for J = ILO,...,IHI\n\
* = P(J) for J = IHI+1,...,N.\n\
* The order in which the interchanges are made is N to IHI+1,\n\
* then 1 to ILO-1.\n\
*\n\
* ABNRM (output) REAL\n\
* The one-norm of the balanced matrix (the maximum\n\
* of the sum of absolute values of elements of any column).\n\
*\n\
* RCONDE (output) REAL array, dimension (N)\n\
* RCONDE(j) is the reciprocal condition number of the j-th\n\
* eigenvalue.\n\
*\n\
* RCONDV (output) REAL array, dimension (N)\n\
* RCONDV(j) is the reciprocal condition number of the j-th\n\
* right eigenvector.\n\
*\n\
* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))\n\
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
*\n\
* LWORK (input) INTEGER\n\
* The dimension of the array WORK. If SENSE = 'N' or 'E',\n\
* LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V',\n\
* LWORK >= 3*N. If SENSE = 'V' or 'B', LWORK >= N*(N+6).\n\
* For good performance, LWORK must generally be larger.\n\
*\n\
* If LWORK = -1, then a workspace query is assumed; the routine\n\
* only calculates the optimal size of the WORK array, returns\n\
* this value as the first entry of the WORK array, and no error\n\
* message related to LWORK is issued by XERBLA.\n\
*\n\
* IWORK (workspace) INTEGER array, dimension (2*N-2)\n\
* If SENSE = 'N' or 'E', not referenced.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
* > 0: if INFO = i, the QR algorithm failed to compute all the\n\
* eigenvalues, and no eigenvectors or condition numbers\n\
* have been computed; elements 1:ILO-1 and i+1:N of WR\n\
* and WI contain eigenvalues which have converged.\n\
*\n\n\
* =====================================================================\n\
*\n"
|