File: sggev

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (206 lines) | stat: -rwxr-xr-x 7,269 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
--- 
:name: sggev
:md5sum: c8f02404add51e664f048466e576c7d2
:category: :subroutine
:arguments: 
- jobvl: 
    :type: char
    :intent: input
- jobvr: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: real
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- b: 
    :type: real
    :intent: input/output
    :dims: 
    - ldb
    - n
- ldb: 
    :type: integer
    :intent: input
- alphar: 
    :type: real
    :intent: output
    :dims: 
    - n
- alphai: 
    :type: real
    :intent: output
    :dims: 
    - n
- beta: 
    :type: real
    :intent: output
    :dims: 
    - n
- vl: 
    :type: real
    :intent: output
    :dims: 
    - ldvl
    - n
- ldvl: 
    :type: integer
    :intent: input
- vr: 
    :type: real
    :intent: output
    :dims: 
    - ldvr
    - n
- ldvr: 
    :type: integer
    :intent: input
- work: 
    :type: real
    :intent: output
    :dims: 
    - MAX(1,lwork)
- lwork: 
    :type: integer
    :intent: input
    :option: true
    :default: MAX(1,8*n)
- info: 
    :type: integer
    :intent: output
:substitutions: 
  ldvr: "lsame_(&jobvr,\"V\") ? n : 1"
  ldvl: "lsame_(&jobvl,\"V\") ? n : 1"
:fortran_help: "      SUBROUTINE SGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  SGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B)\n\
  *  the generalized eigenvalues, and optionally, the left and/or right\n\
  *  generalized eigenvectors.\n\
  *\n\
  *  A generalized eigenvalue for a pair of matrices (A,B) is a scalar\n\
  *  lambda or a ratio alpha/beta = lambda, such that A - lambda*B is\n\
  *  singular. It is usually represented as the pair (alpha,beta), as\n\
  *  there is a reasonable interpretation for beta=0, and even for both\n\
  *  being zero.\n\
  *\n\
  *  The right eigenvector v(j) corresponding to the eigenvalue lambda(j)\n\
  *  of (A,B) satisfies\n\
  *\n\
  *                   A * v(j) = lambda(j) * B * v(j).\n\
  *\n\
  *  The left eigenvector u(j) corresponding to the eigenvalue lambda(j)\n\
  *  of (A,B) satisfies\n\
  *\n\
  *                   u(j)**H * A  = lambda(j) * u(j)**H * B .\n\
  *\n\
  *  where u(j)**H is the conjugate-transpose of u(j).\n\
  *\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  JOBVL   (input) CHARACTER*1\n\
  *          = 'N':  do not compute the left generalized eigenvectors;\n\
  *          = 'V':  compute the left generalized eigenvectors.\n\
  *\n\
  *  JOBVR   (input) CHARACTER*1\n\
  *          = 'N':  do not compute the right generalized eigenvectors;\n\
  *          = 'V':  compute the right generalized eigenvectors.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrices A, B, VL, and VR.  N >= 0.\n\
  *\n\
  *  A       (input/output) REAL array, dimension (LDA, N)\n\
  *          On entry, the matrix A in the pair (A,B).\n\
  *          On exit, A has been overwritten.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of A.  LDA >= max(1,N).\n\
  *\n\
  *  B       (input/output) REAL array, dimension (LDB, N)\n\
  *          On entry, the matrix B in the pair (A,B).\n\
  *          On exit, B has been overwritten.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          The leading dimension of B.  LDB >= max(1,N).\n\
  *\n\
  *  ALPHAR  (output) REAL array, dimension (N)\n\
  *  ALPHAI  (output) REAL array, dimension (N)\n\
  *  BETA    (output) REAL array, dimension (N)\n\
  *          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will\n\
  *          be the generalized eigenvalues.  If ALPHAI(j) is zero, then\n\
  *          the j-th eigenvalue is real; if positive, then the j-th and\n\
  *          (j+1)-st eigenvalues are a complex conjugate pair, with\n\
  *          ALPHAI(j+1) negative.\n\
  *\n\
  *          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)\n\
  *          may easily over- or underflow, and BETA(j) may even be zero.\n\
  *          Thus, the user should avoid naively computing the ratio\n\
  *          alpha/beta.  However, ALPHAR and ALPHAI will be always less\n\
  *          than and usually comparable with norm(A) in magnitude, and\n\
  *          BETA always less than and usually comparable with norm(B).\n\
  *\n\
  *  VL      (output) REAL array, dimension (LDVL,N)\n\
  *          If JOBVL = 'V', the left eigenvectors u(j) are stored one\n\
  *          after another in the columns of VL, in the same order as\n\
  *          their eigenvalues. If the j-th eigenvalue is real, then\n\
  *          u(j) = VL(:,j), the j-th column of VL. If the j-th and\n\
  *          (j+1)-th eigenvalues form a complex conjugate pair, then\n\
  *          u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).\n\
  *          Each eigenvector is scaled so the largest component has\n\
  *          abs(real part)+abs(imag. part)=1.\n\
  *          Not referenced if JOBVL = 'N'.\n\
  *\n\
  *  LDVL    (input) INTEGER\n\
  *          The leading dimension of the matrix VL. LDVL >= 1, and\n\
  *          if JOBVL = 'V', LDVL >= N.\n\
  *\n\
  *  VR      (output) REAL array, dimension (LDVR,N)\n\
  *          If JOBVR = 'V', the right eigenvectors v(j) are stored one\n\
  *          after another in the columns of VR, in the same order as\n\
  *          their eigenvalues. If the j-th eigenvalue is real, then\n\
  *          v(j) = VR(:,j), the j-th column of VR. If the j-th and\n\
  *          (j+1)-th eigenvalues form a complex conjugate pair, then\n\
  *          v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).\n\
  *          Each eigenvector is scaled so the largest component has\n\
  *          abs(real part)+abs(imag. part)=1.\n\
  *          Not referenced if JOBVR = 'N'.\n\
  *\n\
  *  LDVR    (input) INTEGER\n\
  *          The leading dimension of the matrix VR. LDVR >= 1, and\n\
  *          if JOBVR = 'V', LDVR >= N.\n\
  *\n\
  *  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))\n\
  *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
  *\n\
  *  LWORK   (input) INTEGER\n\
  *          The dimension of the array WORK.  LWORK >= max(1,8*N).\n\
  *          For good performance, LWORK must generally be larger.\n\
  *\n\
  *          If LWORK = -1, then a workspace query is assumed; the routine\n\
  *          only calculates the optimal size of the WORK array, returns\n\
  *          this value as the first entry of the WORK array, and no error\n\
  *          message related to LWORK is issued by XERBLA.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value.\n\
  *          = 1,...,N:\n\
  *                The QZ iteration failed.  No eigenvectors have been\n\
  *                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)\n\
  *                should be correct for j=INFO+1,...,N.\n\
  *          > N:  =N+1: other than QZ iteration failed in SHGEQZ.\n\
  *                =N+2: error return from STGEVC.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"