1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
---
:name: sggev
:md5sum: c8f02404add51e664f048466e576c7d2
:category: :subroutine
:arguments:
- jobvl:
:type: char
:intent: input
- jobvr:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: real
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- b:
:type: real
:intent: input/output
:dims:
- ldb
- n
- ldb:
:type: integer
:intent: input
- alphar:
:type: real
:intent: output
:dims:
- n
- alphai:
:type: real
:intent: output
:dims:
- n
- beta:
:type: real
:intent: output
:dims:
- n
- vl:
:type: real
:intent: output
:dims:
- ldvl
- n
- ldvl:
:type: integer
:intent: input
- vr:
:type: real
:intent: output
:dims:
- ldvr
- n
- ldvr:
:type: integer
:intent: input
- work:
:type: real
:intent: output
:dims:
- MAX(1,lwork)
- lwork:
:type: integer
:intent: input
:option: true
:default: MAX(1,8*n)
- info:
:type: integer
:intent: output
:substitutions:
ldvr: "lsame_(&jobvr,\"V\") ? n : 1"
ldvl: "lsame_(&jobvl,\"V\") ? n : 1"
:fortran_help: " SUBROUTINE SGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* SGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B)\n\
* the generalized eigenvalues, and optionally, the left and/or right\n\
* generalized eigenvectors.\n\
*\n\
* A generalized eigenvalue for a pair of matrices (A,B) is a scalar\n\
* lambda or a ratio alpha/beta = lambda, such that A - lambda*B is\n\
* singular. It is usually represented as the pair (alpha,beta), as\n\
* there is a reasonable interpretation for beta=0, and even for both\n\
* being zero.\n\
*\n\
* The right eigenvector v(j) corresponding to the eigenvalue lambda(j)\n\
* of (A,B) satisfies\n\
*\n\
* A * v(j) = lambda(j) * B * v(j).\n\
*\n\
* The left eigenvector u(j) corresponding to the eigenvalue lambda(j)\n\
* of (A,B) satisfies\n\
*\n\
* u(j)**H * A = lambda(j) * u(j)**H * B .\n\
*\n\
* where u(j)**H is the conjugate-transpose of u(j).\n\
*\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* JOBVL (input) CHARACTER*1\n\
* = 'N': do not compute the left generalized eigenvectors;\n\
* = 'V': compute the left generalized eigenvectors.\n\
*\n\
* JOBVR (input) CHARACTER*1\n\
* = 'N': do not compute the right generalized eigenvectors;\n\
* = 'V': compute the right generalized eigenvectors.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrices A, B, VL, and VR. N >= 0.\n\
*\n\
* A (input/output) REAL array, dimension (LDA, N)\n\
* On entry, the matrix A in the pair (A,B).\n\
* On exit, A has been overwritten.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of A. LDA >= max(1,N).\n\
*\n\
* B (input/output) REAL array, dimension (LDB, N)\n\
* On entry, the matrix B in the pair (A,B).\n\
* On exit, B has been overwritten.\n\
*\n\
* LDB (input) INTEGER\n\
* The leading dimension of B. LDB >= max(1,N).\n\
*\n\
* ALPHAR (output) REAL array, dimension (N)\n\
* ALPHAI (output) REAL array, dimension (N)\n\
* BETA (output) REAL array, dimension (N)\n\
* On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will\n\
* be the generalized eigenvalues. If ALPHAI(j) is zero, then\n\
* the j-th eigenvalue is real; if positive, then the j-th and\n\
* (j+1)-st eigenvalues are a complex conjugate pair, with\n\
* ALPHAI(j+1) negative.\n\
*\n\
* Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)\n\
* may easily over- or underflow, and BETA(j) may even be zero.\n\
* Thus, the user should avoid naively computing the ratio\n\
* alpha/beta. However, ALPHAR and ALPHAI will be always less\n\
* than and usually comparable with norm(A) in magnitude, and\n\
* BETA always less than and usually comparable with norm(B).\n\
*\n\
* VL (output) REAL array, dimension (LDVL,N)\n\
* If JOBVL = 'V', the left eigenvectors u(j) are stored one\n\
* after another in the columns of VL, in the same order as\n\
* their eigenvalues. If the j-th eigenvalue is real, then\n\
* u(j) = VL(:,j), the j-th column of VL. If the j-th and\n\
* (j+1)-th eigenvalues form a complex conjugate pair, then\n\
* u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).\n\
* Each eigenvector is scaled so the largest component has\n\
* abs(real part)+abs(imag. part)=1.\n\
* Not referenced if JOBVL = 'N'.\n\
*\n\
* LDVL (input) INTEGER\n\
* The leading dimension of the matrix VL. LDVL >= 1, and\n\
* if JOBVL = 'V', LDVL >= N.\n\
*\n\
* VR (output) REAL array, dimension (LDVR,N)\n\
* If JOBVR = 'V', the right eigenvectors v(j) are stored one\n\
* after another in the columns of VR, in the same order as\n\
* their eigenvalues. If the j-th eigenvalue is real, then\n\
* v(j) = VR(:,j), the j-th column of VR. If the j-th and\n\
* (j+1)-th eigenvalues form a complex conjugate pair, then\n\
* v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).\n\
* Each eigenvector is scaled so the largest component has\n\
* abs(real part)+abs(imag. part)=1.\n\
* Not referenced if JOBVR = 'N'.\n\
*\n\
* LDVR (input) INTEGER\n\
* The leading dimension of the matrix VR. LDVR >= 1, and\n\
* if JOBVR = 'V', LDVR >= N.\n\
*\n\
* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))\n\
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
*\n\
* LWORK (input) INTEGER\n\
* The dimension of the array WORK. LWORK >= max(1,8*N).\n\
* For good performance, LWORK must generally be larger.\n\
*\n\
* If LWORK = -1, then a workspace query is assumed; the routine\n\
* only calculates the optimal size of the WORK array, returns\n\
* this value as the first entry of the WORK array, and no error\n\
* message related to LWORK is issued by XERBLA.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
* = 1,...,N:\n\
* The QZ iteration failed. No eigenvectors have been\n\
* calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)\n\
* should be correct for j=INFO+1,...,N.\n\
* > N: =N+1: other than QZ iteration failed in SHGEQZ.\n\
* =N+2: error return from STGEVC.\n\
*\n\n\
* =====================================================================\n\
*\n"
|