File: sggsvp

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (233 lines) | stat: -rwxr-xr-x 6,741 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
--- 
:name: sggsvp
:md5sum: 8f9fa51bd57835c14e5543a88bb2b821
:category: :subroutine
:arguments: 
- jobu: 
    :type: char
    :intent: input
- jobv: 
    :type: char
    :intent: input
- jobq: 
    :type: char
    :intent: input
- m: 
    :type: integer
    :intent: input
- p: 
    :type: integer
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: real
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- b: 
    :type: real
    :intent: input/output
    :dims: 
    - ldb
    - n
- ldb: 
    :type: integer
    :intent: input
- tola: 
    :type: real
    :intent: input
- tolb: 
    :type: real
    :intent: input
- k: 
    :type: integer
    :intent: output
- l: 
    :type: integer
    :intent: output
- u: 
    :type: real
    :intent: output
    :dims: 
    - ldu
    - m
- ldu: 
    :type: integer
    :intent: input
- v: 
    :type: real
    :intent: output
    :dims: 
    - ldv
    - p
- ldv: 
    :type: integer
    :intent: input
- q: 
    :type: real
    :intent: output
    :dims: 
    - ldq
    - n
- ldq: 
    :type: integer
    :intent: input
- iwork: 
    :type: integer
    :intent: workspace
    :dims: 
    - n
- tau: 
    :type: real
    :intent: workspace
    :dims: 
    - n
- work: 
    :type: real
    :intent: workspace
    :dims: 
    - MAX(MAX(3*n,m),p)
- info: 
    :type: integer
    :intent: output
:substitutions: 
  m: lda
  p: ldb
  ldq: "lsame_(&jobq,\"Q\") ? MAX(1,n) : 1"
  ldu: "lsame_(&jobu,\"U\") ? MAX(1,m) : 1"
  ldv: "lsame_(&jobv,\"V\") ? MAX(1,p) : 1"
:fortran_help: "      SUBROUTINE SGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, TAU, WORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  SGGSVP computes orthogonal matrices U, V and Q such that\n\
  *\n\
  *                   N-K-L  K    L\n\
  *   U'*A*Q =     K ( 0    A12  A13 )  if M-K-L >= 0;\n\
  *                L ( 0     0   A23 )\n\
  *            M-K-L ( 0     0    0  )\n\
  *\n\
  *                   N-K-L  K    L\n\
  *          =     K ( 0    A12  A13 )  if M-K-L < 0;\n\
  *              M-K ( 0     0   A23 )\n\
  *\n\
  *                 N-K-L  K    L\n\
  *   V'*B*Q =   L ( 0     0   B13 )\n\
  *            P-L ( 0     0    0  )\n\
  *\n\
  *  where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular\n\
  *  upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,\n\
  *  otherwise A23 is (M-K)-by-L upper trapezoidal.  K+L = the effective\n\
  *  numerical rank of the (M+P)-by-N matrix (A',B')'.  Z' denotes the\n\
  *  transpose of Z.\n\
  *\n\
  *  This decomposition is the preprocessing step for computing the\n\
  *  Generalized Singular Value Decomposition (GSVD), see subroutine\n\
  *  SGGSVD.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  JOBU    (input) CHARACTER*1\n\
  *          = 'U':  Orthogonal matrix U is computed;\n\
  *          = 'N':  U is not computed.\n\
  *\n\
  *  JOBV    (input) CHARACTER*1\n\
  *          = 'V':  Orthogonal matrix V is computed;\n\
  *          = 'N':  V is not computed.\n\
  *\n\
  *  JOBQ    (input) CHARACTER*1\n\
  *          = 'Q':  Orthogonal matrix Q is computed;\n\
  *          = 'N':  Q is not computed.\n\
  *\n\
  *  M       (input) INTEGER\n\
  *          The number of rows of the matrix A.  M >= 0.\n\
  *\n\
  *  P       (input) INTEGER\n\
  *          The number of rows of the matrix B.  P >= 0.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of columns of the matrices A and B.  N >= 0.\n\
  *\n\
  *  A       (input/output) REAL array, dimension (LDA,N)\n\
  *          On entry, the M-by-N matrix A.\n\
  *          On exit, A contains the triangular (or trapezoidal) matrix\n\
  *          described in the Purpose section.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A. LDA >= max(1,M).\n\
  *\n\
  *  B       (input/output) REAL array, dimension (LDB,N)\n\
  *          On entry, the P-by-N matrix B.\n\
  *          On exit, B contains the triangular matrix described in\n\
  *          the Purpose section.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          The leading dimension of the array B. LDB >= max(1,P).\n\
  *\n\
  *  TOLA    (input) REAL\n\
  *  TOLB    (input) REAL\n\
  *          TOLA and TOLB are the thresholds to determine the effective\n\
  *          numerical rank of matrix B and a subblock of A. Generally,\n\
  *          they are set to\n\
  *             TOLA = MAX(M,N)*norm(A)*MACHEPS,\n\
  *             TOLB = MAX(P,N)*norm(B)*MACHEPS.\n\
  *          The size of TOLA and TOLB may affect the size of backward\n\
  *          errors of the decomposition.\n\
  *\n\
  *  K       (output) INTEGER\n\
  *  L       (output) INTEGER\n\
  *          On exit, K and L specify the dimension of the subblocks\n\
  *          described in Purpose.\n\
  *          K + L = effective numerical rank of (A',B')'.\n\
  *\n\
  *  U       (output) REAL array, dimension (LDU,M)\n\
  *          If JOBU = 'U', U contains the orthogonal matrix U.\n\
  *          If JOBU = 'N', U is not referenced.\n\
  *\n\
  *  LDU     (input) INTEGER\n\
  *          The leading dimension of the array U. LDU >= max(1,M) if\n\
  *          JOBU = 'U'; LDU >= 1 otherwise.\n\
  *\n\
  *  V       (output) REAL array, dimension (LDV,P)\n\
  *          If JOBV = 'V', V contains the orthogonal matrix V.\n\
  *          If JOBV = 'N', V is not referenced.\n\
  *\n\
  *  LDV     (input) INTEGER\n\
  *          The leading dimension of the array V. LDV >= max(1,P) if\n\
  *          JOBV = 'V'; LDV >= 1 otherwise.\n\
  *\n\
  *  Q       (output) REAL array, dimension (LDQ,N)\n\
  *          If JOBQ = 'Q', Q contains the orthogonal matrix Q.\n\
  *          If JOBQ = 'N', Q is not referenced.\n\
  *\n\
  *  LDQ     (input) INTEGER\n\
  *          The leading dimension of the array Q. LDQ >= max(1,N) if\n\
  *          JOBQ = 'Q'; LDQ >= 1 otherwise.\n\
  *\n\
  *  IWORK   (workspace) INTEGER array, dimension (N)\n\
  *\n\
  *  TAU     (workspace) REAL array, dimension (N)\n\
  *\n\
  *  WORK    (workspace) REAL array, dimension (max(3*N,M,P))\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value.\n\
  *\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  The subroutine uses LAPACK subroutine SGEQPF for the QR factorization\n\
  *  with column pivoting to detect the effective numerical rank of the\n\
  *  a matrix. It may be replaced by a better rank determination strategy.\n\
  *\n\
  *  =====================================================================\n\
  *\n"