1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
---
:name: sgtrfs
:md5sum: 07d24cfa02e3c548ded77eb4cde10139
:category: :subroutine
:arguments:
- trans:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- nrhs:
:type: integer
:intent: input
- dl:
:type: real
:intent: input
:dims:
- n-1
- d:
:type: real
:intent: input
:dims:
- n
- du:
:type: real
:intent: input
:dims:
- n-1
- dlf:
:type: real
:intent: input
:dims:
- n-1
- df:
:type: real
:intent: input
:dims:
- n
- duf:
:type: real
:intent: input
:dims:
- n-1
- du2:
:type: real
:intent: input
:dims:
- n-2
- ipiv:
:type: integer
:intent: input
:dims:
- n
- b:
:type: real
:intent: input
:dims:
- ldb
- nrhs
- ldb:
:type: integer
:intent: input
- x:
:type: real
:intent: input/output
:dims:
- ldx
- nrhs
- ldx:
:type: integer
:intent: input
- ferr:
:type: real
:intent: output
:dims:
- nrhs
- berr:
:type: real
:intent: output
:dims:
- nrhs
- work:
:type: real
:intent: workspace
:dims:
- 3*n
- iwork:
:type: integer
:intent: workspace
:dims:
- n
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE SGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* SGTRFS improves the computed solution to a system of linear\n\
* equations when the coefficient matrix is tridiagonal, and provides\n\
* error bounds and backward error estimates for the solution.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* TRANS (input) CHARACTER*1\n\
* Specifies the form of the system of equations:\n\
* = 'N': A * X = B (No transpose)\n\
* = 'T': A**T * X = B (Transpose)\n\
* = 'C': A**H * X = B (Conjugate transpose = Transpose)\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* NRHS (input) INTEGER\n\
* The number of right hand sides, i.e., the number of columns\n\
* of the matrix B. NRHS >= 0.\n\
*\n\
* DL (input) REAL array, dimension (N-1)\n\
* The (n-1) subdiagonal elements of A.\n\
*\n\
* D (input) REAL array, dimension (N)\n\
* The diagonal elements of A.\n\
*\n\
* DU (input) REAL array, dimension (N-1)\n\
* The (n-1) superdiagonal elements of A.\n\
*\n\
* DLF (input) REAL array, dimension (N-1)\n\
* The (n-1) multipliers that define the matrix L from the\n\
* LU factorization of A as computed by SGTTRF.\n\
*\n\
* DF (input) REAL array, dimension (N)\n\
* The n diagonal elements of the upper triangular matrix U from\n\
* the LU factorization of A.\n\
*\n\
* DUF (input) REAL array, dimension (N-1)\n\
* The (n-1) elements of the first superdiagonal of U.\n\
*\n\
* DU2 (input) REAL array, dimension (N-2)\n\
* The (n-2) elements of the second superdiagonal of U.\n\
*\n\
* IPIV (input) INTEGER array, dimension (N)\n\
* The pivot indices; for 1 <= i <= n, row i of the matrix was\n\
* interchanged with row IPIV(i). IPIV(i) will always be either\n\
* i or i+1; IPIV(i) = i indicates a row interchange was not\n\
* required.\n\
*\n\
* B (input) REAL array, dimension (LDB,NRHS)\n\
* The right hand side matrix B.\n\
*\n\
* LDB (input) INTEGER\n\
* The leading dimension of the array B. LDB >= max(1,N).\n\
*\n\
* X (input/output) REAL array, dimension (LDX,NRHS)\n\
* On entry, the solution matrix X, as computed by SGTTRS.\n\
* On exit, the improved solution matrix X.\n\
*\n\
* LDX (input) INTEGER\n\
* The leading dimension of the array X. LDX >= max(1,N).\n\
*\n\
* FERR (output) REAL array, dimension (NRHS)\n\
* The estimated forward error bound for each solution vector\n\
* X(j) (the j-th column of the solution matrix X).\n\
* If XTRUE is the true solution corresponding to X(j), FERR(j)\n\
* is an estimated upper bound for the magnitude of the largest\n\
* element in (X(j) - XTRUE) divided by the magnitude of the\n\
* largest element in X(j). The estimate is as reliable as\n\
* the estimate for RCOND, and is almost always a slight\n\
* overestimate of the true error.\n\
*\n\
* BERR (output) REAL array, dimension (NRHS)\n\
* The componentwise relative backward error of each solution\n\
* vector X(j) (i.e., the smallest relative change in\n\
* any element of A or B that makes X(j) an exact solution).\n\
*\n\
* WORK (workspace) REAL array, dimension (3*N)\n\
*\n\
* IWORK (workspace) INTEGER array, dimension (N)\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
*\n\
* Internal Parameters\n\
* ===================\n\
*\n\
* ITMAX is the maximum number of steps of iterative refinement.\n\
*\n\n\
* =====================================================================\n\
*\n"
|