File: sgtsv

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (100 lines) | stat: -rwxr-xr-x 2,961 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
--- 
:name: sgtsv
:md5sum: d0c8275ef5b870545d926bfab7aac31d
:category: :subroutine
:arguments: 
- n: 
    :type: integer
    :intent: input
- nrhs: 
    :type: integer
    :intent: input
- dl: 
    :type: real
    :intent: input/output
    :dims: 
    - n-1
- d: 
    :type: real
    :intent: input/output
    :dims: 
    - n
- du: 
    :type: real
    :intent: input/output
    :dims: 
    - n-1
- b: 
    :type: real
    :intent: input/output
    :dims: 
    - ldb
    - nrhs
- ldb: 
    :type: integer
    :intent: input
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE SGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  SGTSV  solves the equation\n\
  *\n\
  *     A*X = B,\n\
  *\n\
  *  where A is an n by n tridiagonal matrix, by Gaussian elimination with\n\
  *  partial pivoting.\n\
  *\n\
  *  Note that the equation  A'*X = B  may be solved by interchanging the\n\
  *  order of the arguments DU and DL.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.\n\
  *\n\
  *  NRHS    (input) INTEGER\n\
  *          The number of right hand sides, i.e., the number of columns\n\
  *          of the matrix B.  NRHS >= 0.\n\
  *\n\
  *  DL      (input/output) REAL array, dimension (N-1)\n\
  *          On entry, DL must contain the (n-1) sub-diagonal elements of\n\
  *          A.\n\
  *\n\
  *          On exit, DL is overwritten by the (n-2) elements of the\n\
  *          second super-diagonal of the upper triangular matrix U from\n\
  *          the LU factorization of A, in DL(1), ..., DL(n-2).\n\
  *\n\
  *  D       (input/output) REAL array, dimension (N)\n\
  *          On entry, D must contain the diagonal elements of A.\n\
  *\n\
  *          On exit, D is overwritten by the n diagonal elements of U.\n\
  *\n\
  *  DU      (input/output) REAL array, dimension (N-1)\n\
  *          On entry, DU must contain the (n-1) super-diagonal elements\n\
  *          of A.\n\
  *\n\
  *          On exit, DU is overwritten by the (n-1) elements of the first\n\
  *          super-diagonal of U.\n\
  *\n\
  *  B       (input/output) REAL array, dimension (LDB,NRHS)\n\
  *          On entry, the N by NRHS matrix of right hand side matrix B.\n\
  *          On exit, if INFO = 0, the N by NRHS solution matrix X.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          The leading dimension of the array B.  LDB >= max(1,N).\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0: successful exit\n\
  *          < 0: if INFO = -i, the i-th argument had an illegal value\n\
  *          > 0: if INFO = i, U(i,i) is exactly zero, and the solution\n\
  *               has not been computed.  The factorization has not been\n\
  *               completed unless i = N.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"