File: slaed1

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (141 lines) | stat: -rwxr-xr-x 5,058 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
--- 
:name: slaed1
:md5sum: d07835f50a422bece671635ac839355a
:category: :subroutine
:arguments: 
- n: 
    :type: integer
    :intent: input
- d: 
    :type: real
    :intent: input/output
    :dims: 
    - n
- q: 
    :type: real
    :intent: input/output
    :dims: 
    - ldq
    - n
- ldq: 
    :type: integer
    :intent: input
- indxq: 
    :type: integer
    :intent: input/output
    :dims: 
    - n
- rho: 
    :type: real
    :intent: input
- cutpnt: 
    :type: integer
    :intent: input
- work: 
    :type: real
    :intent: workspace
    :dims: 
    - 4*n + pow(n,2)
- iwork: 
    :type: integer
    :intent: workspace
    :dims: 
    - 4*n
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE SLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  SLAED1 computes the updated eigensystem of a diagonal\n\
  *  matrix after modification by a rank-one symmetric matrix.  This\n\
  *  routine is used only for the eigenproblem which requires all\n\
  *  eigenvalues and eigenvectors of a tridiagonal matrix.  SLAED7 handles\n\
  *  the case in which eigenvalues only or eigenvalues and eigenvectors\n\
  *  of a full symmetric matrix (which was reduced to tridiagonal form)\n\
  *  are desired.\n\
  *\n\
  *    T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)\n\
  *\n\
  *     where Z = Q'u, u is a vector of length N with ones in the\n\
  *     CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.\n\
  *\n\
  *     The eigenvectors of the original matrix are stored in Q, and the\n\
  *     eigenvalues are in D.  The algorithm consists of three stages:\n\
  *\n\
  *        The first stage consists of deflating the size of the problem\n\
  *        when there are multiple eigenvalues or if there is a zero in\n\
  *        the Z vector.  For each such occurrence the dimension of the\n\
  *        secular equation problem is reduced by one.  This stage is\n\
  *        performed by the routine SLAED2.\n\
  *\n\
  *        The second stage consists of calculating the updated\n\
  *        eigenvalues. This is done by finding the roots of the secular\n\
  *        equation via the routine SLAED4 (as called by SLAED3).\n\
  *        This routine also calculates the eigenvectors of the current\n\
  *        problem.\n\
  *\n\
  *        The final stage consists of computing the updated eigenvectors\n\
  *        directly using the updated eigenvalues.  The eigenvectors for\n\
  *        the current problem are multiplied with the eigenvectors from\n\
  *        the overall problem.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  N      (input) INTEGER\n\
  *         The dimension of the symmetric tridiagonal matrix.  N >= 0.\n\
  *\n\
  *  D      (input/output) REAL array, dimension (N)\n\
  *         On entry, the eigenvalues of the rank-1-perturbed matrix.\n\
  *         On exit, the eigenvalues of the repaired matrix.\n\
  *\n\
  *  Q      (input/output) REAL array, dimension (LDQ,N)\n\
  *         On entry, the eigenvectors of the rank-1-perturbed matrix.\n\
  *         On exit, the eigenvectors of the repaired tridiagonal matrix.\n\
  *\n\
  *  LDQ    (input) INTEGER\n\
  *         The leading dimension of the array Q.  LDQ >= max(1,N).\n\
  *\n\
  *  INDXQ  (input/output) INTEGER array, dimension (N)\n\
  *         On entry, the permutation which separately sorts the two\n\
  *         subproblems in D into ascending order.\n\
  *         On exit, the permutation which will reintegrate the\n\
  *         subproblems back into sorted order,\n\
  *         i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.\n\
  *\n\
  *  RHO    (input) REAL\n\
  *         The subdiagonal entry used to create the rank-1 modification.\n\
  *\n\
  *  CUTPNT (input) INTEGER\n\
  *         The location of the last eigenvalue in the leading sub-matrix.\n\
  *         min(1,N) <= CUTPNT <= N/2.\n\
  *\n\
  *  WORK   (workspace) REAL array, dimension (4*N + N**2)\n\
  *\n\
  *  IWORK  (workspace) INTEGER array, dimension (4*N)\n\
  *\n\
  *  INFO   (output) INTEGER\n\
  *          = 0:  successful exit.\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value.\n\
  *          > 0:  if INFO = 1, an eigenvalue did not converge\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  Based on contributions by\n\
  *     Jeff Rutter, Computer Science Division, University of California\n\
  *     at Berkeley, USA\n\
  *  Modified by Francoise Tisseur, University of Tennessee.\n\
  *\n\
  *  =====================================================================\n\
  *\n\
  *     .. Local Scalars ..\n      INTEGER            COLTYP, CPP1, I, IDLMDA, INDX, INDXC, INDXP,\n     $                   IQ2, IS, IW, IZ, K, N1, N2\n\
  *     ..\n\
  *     .. External Subroutines ..\n      EXTERNAL           SCOPY, SLAED2, SLAED3, SLAMRG, XERBLA\n\
  *     ..\n\
  *     .. Intrinsic Functions ..\n      INTRINSIC          MAX, MIN\n\
  *     ..\n"