File: slalsa

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (268 lines) | stat: -rwxr-xr-x 7,950 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
--- 
:name: slalsa
:md5sum: 3817ef103afe5374c5f2833dfd84f267
:category: :subroutine
:arguments: 
- icompq: 
    :type: integer
    :intent: input
- smlsiz: 
    :type: integer
    :intent: input
- n: 
    :type: integer
    :intent: input
- nrhs: 
    :type: integer
    :intent: input
- b: 
    :type: real
    :intent: input/output
    :dims: 
    - ldb
    - nrhs
- ldb: 
    :type: integer
    :intent: input
- bx: 
    :type: real
    :intent: output
    :dims: 
    - ldbx
    - nrhs
- ldbx: 
    :type: integer
    :intent: input
- u: 
    :type: real
    :intent: input
    :dims: 
    - ldu
    - smlsiz
- ldu: 
    :type: integer
    :intent: input
- vt: 
    :type: real
    :intent: input
    :dims: 
    - ldu
    - smlsiz+1
- k: 
    :type: integer
    :intent: input
    :dims: 
    - n
- difl: 
    :type: real
    :intent: input
    :dims: 
    - ldu
    - nlvl
- difr: 
    :type: real
    :intent: input
    :dims: 
    - ldu
    - 2 * nlvl
- z: 
    :type: real
    :intent: input
    :dims: 
    - ldu
    - nlvl
- poles: 
    :type: real
    :intent: input
    :dims: 
    - ldu
    - 2 * nlvl
- givptr: 
    :type: integer
    :intent: input
    :dims: 
    - n
- givcol: 
    :type: integer
    :intent: input
    :dims: 
    - ldgcol
    - 2 * nlvl
- ldgcol: 
    :type: integer
    :intent: input
- perm: 
    :type: integer
    :intent: input
    :dims: 
    - ldgcol
    - nlvl
- givnum: 
    :type: real
    :intent: input
    :dims: 
    - ldu
    - 2 * nlvl
- c: 
    :type: real
    :intent: input
    :dims: 
    - n
- s: 
    :type: real
    :intent: input
    :dims: 
    - n
- work: 
    :type: real
    :intent: workspace
    :dims: 
    - n
- iwork: 
    :type: integer
    :intent: workspace
    :dims: 
    - 3 * n
- info: 
    :type: integer
    :intent: output
:substitutions: 
  ldbx: n
  nlvl: (int)(1.0/log(2.0)*log((double)n/(smlsiz+1))) + 1
:fortran_help: "      SUBROUTINE SLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U, LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK, IWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  SLALSA is an itermediate step in solving the least squares problem\n\
  *  by computing the SVD of the coefficient matrix in compact form (The\n\
  *  singular vectors are computed as products of simple orthorgonal\n\
  *  matrices.).\n\
  *\n\
  *  If ICOMPQ = 0, SLALSA applies the inverse of the left singular vector\n\
  *  matrix of an upper bidiagonal matrix to the right hand side; and if\n\
  *  ICOMPQ = 1, SLALSA applies the right singular vector matrix to the\n\
  *  right hand side. The singular vector matrices were generated in\n\
  *  compact form by SLALSA.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *\n\
  *  ICOMPQ (input) INTEGER\n\
  *         Specifies whether the left or the right singular vector\n\
  *         matrix is involved.\n\
  *         = 0: Left singular vector matrix\n\
  *         = 1: Right singular vector matrix\n\
  *\n\
  *  SMLSIZ (input) INTEGER\n\
  *         The maximum size of the subproblems at the bottom of the\n\
  *         computation tree.\n\
  *\n\
  *  N      (input) INTEGER\n\
  *         The row and column dimensions of the upper bidiagonal matrix.\n\
  *\n\
  *  NRHS   (input) INTEGER\n\
  *         The number of columns of B and BX. NRHS must be at least 1.\n\
  *\n\
  *  B      (input/output) REAL array, dimension ( LDB, NRHS )\n\
  *         On input, B contains the right hand sides of the least\n\
  *         squares problem in rows 1 through M.\n\
  *         On output, B contains the solution X in rows 1 through N.\n\
  *\n\
  *  LDB    (input) INTEGER\n\
  *         The leading dimension of B in the calling subprogram.\n\
  *         LDB must be at least max(1,MAX( M, N ) ).\n\
  *\n\
  *  BX     (output) REAL array, dimension ( LDBX, NRHS )\n\
  *         On exit, the result of applying the left or right singular\n\
  *         vector matrix to B.\n\
  *\n\
  *  LDBX   (input) INTEGER\n\
  *         The leading dimension of BX.\n\
  *\n\
  *  U      (input) REAL array, dimension ( LDU, SMLSIZ ).\n\
  *         On entry, U contains the left singular vector matrices of all\n\
  *         subproblems at the bottom level.\n\
  *\n\
  *  LDU    (input) INTEGER, LDU = > N.\n\
  *         The leading dimension of arrays U, VT, DIFL, DIFR,\n\
  *         POLES, GIVNUM, and Z.\n\
  *\n\
  *  VT     (input) REAL array, dimension ( LDU, SMLSIZ+1 ).\n\
  *         On entry, VT' contains the right singular vector matrices of\n\
  *         all subproblems at the bottom level.\n\
  *\n\
  *  K      (input) INTEGER array, dimension ( N ).\n\
  *\n\
  *  DIFL   (input) REAL array, dimension ( LDU, NLVL ).\n\
  *         where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.\n\
  *\n\
  *  DIFR   (input) REAL array, dimension ( LDU, 2 * NLVL ).\n\
  *         On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record\n\
  *         distances between singular values on the I-th level and\n\
  *         singular values on the (I -1)-th level, and DIFR(*, 2 * I)\n\
  *         record the normalizing factors of the right singular vectors\n\
  *         matrices of subproblems on I-th level.\n\
  *\n\
  *  Z      (input) REAL array, dimension ( LDU, NLVL ).\n\
  *         On entry, Z(1, I) contains the components of the deflation-\n\
  *         adjusted updating row vector for subproblems on the I-th\n\
  *         level.\n\
  *\n\
  *  POLES  (input) REAL array, dimension ( LDU, 2 * NLVL ).\n\
  *         On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old\n\
  *         singular values involved in the secular equations on the I-th\n\
  *         level.\n\
  *\n\
  *  GIVPTR (input) INTEGER array, dimension ( N ).\n\
  *         On entry, GIVPTR( I ) records the number of Givens\n\
  *         rotations performed on the I-th problem on the computation\n\
  *         tree.\n\
  *\n\
  *  GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ).\n\
  *         On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the\n\
  *         locations of Givens rotations performed on the I-th level on\n\
  *         the computation tree.\n\
  *\n\
  *  LDGCOL (input) INTEGER, LDGCOL = > N.\n\
  *         The leading dimension of arrays GIVCOL and PERM.\n\
  *\n\
  *  PERM   (input) INTEGER array, dimension ( LDGCOL, NLVL ).\n\
  *         On entry, PERM(*, I) records permutations done on the I-th\n\
  *         level of the computation tree.\n\
  *\n\
  *  GIVNUM (input) REAL array, dimension ( LDU, 2 * NLVL ).\n\
  *         On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-\n\
  *         values of Givens rotations performed on the I-th level on the\n\
  *         computation tree.\n\
  *\n\
  *  C      (input) REAL array, dimension ( N ).\n\
  *         On entry, if the I-th subproblem is not square,\n\
  *         C( I ) contains the C-value of a Givens rotation related to\n\
  *         the right null space of the I-th subproblem.\n\
  *\n\
  *  S      (input) REAL array, dimension ( N ).\n\
  *         On entry, if the I-th subproblem is not square,\n\
  *         S( I ) contains the S-value of a Givens rotation related to\n\
  *         the right null space of the I-th subproblem.\n\
  *\n\
  *  WORK   (workspace) REAL array.\n\
  *         The dimension must be at least N.\n\
  *\n\
  *  IWORK  (workspace) INTEGER array.\n\
  *         The dimension must be at least 3 * N\n\
  *\n\
  *  INFO   (output) INTEGER\n\
  *          = 0:  successful exit.\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  Based on contributions by\n\
  *     Ming Gu and Ren-Cang Li, Computer Science Division, University of\n\
  *       California at Berkeley, USA\n\
  *     Osni Marques, LBNL/NERSC, USA\n\
  *\n\
  *  =====================================================================\n\
  *\n"