File: slansf

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (179 lines) | stat: -rwxr-xr-x 6,511 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
--- 
:name: slansf
:md5sum: 014dd5ab8c3ce978110881e5d5f9d13b
:category: :function
:type: real
:arguments: 
- norm: 
    :type: char
    :intent: input
- transr: 
    :type: char
    :intent: input
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: real
    :intent: input
    :dims: 
    - n*(n+1)/2
- work: 
    :type: real
    :intent: workspace
    :dims: 
    - "MAX(1,(lsame_(&norm,\"I\")||lsame_(&norm,\"1\")||lsame_(&norm,\"o\")) ? n : 0)"
:substitutions: {}

:fortran_help: "      REAL FUNCTION SLANSF( NORM, TRANSR, UPLO, N, A, WORK )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  SLANSF returns the value of the one norm, or the Frobenius norm, or\n\
  *  the infinity norm, or the element of largest absolute value of a\n\
  *  real symmetric matrix A in RFP format.\n\
  *\n\
  *  Description\n\
  *  ===========\n\
  *\n\
  *  SLANSF returns the value\n\
  *\n\
  *     SLANSF = ( max(abs(A(i,j))), NORM = 'M' or 'm'\n\
  *              (\n\
  *              ( norm1(A),         NORM = '1', 'O' or 'o'\n\
  *              (\n\
  *              ( normI(A),         NORM = 'I' or 'i'\n\
  *              (\n\
  *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'\n\
  *\n\
  *  where  norm1  denotes the  one norm of a matrix (maximum column sum),\n\
  *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and\n\
  *  normF  denotes the  Frobenius norm of a matrix (square root of sum of\n\
  *  squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  NORM    (input) CHARACTER*1\n\
  *          Specifies the value to be returned in SLANSF as described\n\
  *          above.\n\
  *\n\
  *  TRANSR  (input) CHARACTER*1\n\
  *          Specifies whether the RFP format of A is normal or\n\
  *          transposed format.\n\
  *          = 'N':  RFP format is Normal;\n\
  *          = 'T':  RFP format is Transpose.\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *           On entry, UPLO specifies whether the RFP matrix A came from\n\
  *           an upper or lower triangular matrix as follows:\n\
  *           = 'U': RFP A came from an upper triangular matrix;\n\
  *           = 'L': RFP A came from a lower triangular matrix.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A. N >= 0. When N = 0, SLANSF is\n\
  *          set to zero.\n\
  *\n\
  *  A       (input) REAL array, dimension ( N*(N+1)/2 );\n\
  *          On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L')\n\
  *          part of the symmetric matrix A stored in RFP format. See the\n\
  *          \"Notes\" below for more details.\n\
  *          Unchanged on exit.\n\
  *\n\
  *  WORK    (workspace) REAL array, dimension (MAX(1,LWORK)),\n\
  *          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,\n\
  *          WORK is not referenced.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  We first consider Rectangular Full Packed (RFP) Format when N is\n\
  *  even. We give an example where N = 6.\n\
  *\n\
  *      AP is Upper             AP is Lower\n\
  *\n\
  *   00 01 02 03 04 05       00\n\
  *      11 12 13 14 15       10 11\n\
  *         22 23 24 25       20 21 22\n\
  *            33 34 35       30 31 32 33\n\
  *               44 45       40 41 42 43 44\n\
  *                  55       50 51 52 53 54 55\n\
  *\n\
  *\n\
  *  Let TRANSR = 'N'. RFP holds AP as follows:\n\
  *  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last\n\
  *  three columns of AP upper. The lower triangle A(4:6,0:2) consists of\n\
  *  the transpose of the first three columns of AP upper.\n\
  *  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first\n\
  *  three columns of AP lower. The upper triangle A(0:2,0:2) consists of\n\
  *  the transpose of the last three columns of AP lower.\n\
  *  This covers the case N even and TRANSR = 'N'.\n\
  *\n\
  *         RFP A                   RFP A\n\
  *\n\
  *        03 04 05                33 43 53\n\
  *        13 14 15                00 44 54\n\
  *        23 24 25                10 11 55\n\
  *        33 34 35                20 21 22\n\
  *        00 44 45                30 31 32\n\
  *        01 11 55                40 41 42\n\
  *        02 12 22                50 51 52\n\
  *\n\
  *  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the\n\
  *  transpose of RFP A above. One therefore gets:\n\
  *\n\
  *\n\
  *           RFP A                   RFP A\n\
  *\n\
  *     03 13 23 33 00 01 02    33 00 10 20 30 40 50\n\
  *     04 14 24 34 44 11 12    43 44 11 21 31 41 51\n\
  *     05 15 25 35 45 55 22    53 54 55 22 32 42 52\n\
  *\n\
  *\n\
  *  We then consider Rectangular Full Packed (RFP) Format when N is\n\
  *  odd. We give an example where N = 5.\n\
  *\n\
  *     AP is Upper                 AP is Lower\n\
  *\n\
  *   00 01 02 03 04              00\n\
  *      11 12 13 14              10 11\n\
  *         22 23 24              20 21 22\n\
  *            33 34              30 31 32 33\n\
  *               44              40 41 42 43 44\n\
  *\n\
  *\n\
  *  Let TRANSR = 'N'. RFP holds AP as follows:\n\
  *  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last\n\
  *  three columns of AP upper. The lower triangle A(3:4,0:1) consists of\n\
  *  the transpose of the first two columns of AP upper.\n\
  *  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first\n\
  *  three columns of AP lower. The upper triangle A(0:1,1:2) consists of\n\
  *  the transpose of the last two columns of AP lower.\n\
  *  This covers the case N odd and TRANSR = 'N'.\n\
  *\n\
  *         RFP A                   RFP A\n\
  *\n\
  *        02 03 04                00 33 43\n\
  *        12 13 14                10 11 44\n\
  *        22 23 24                20 21 22\n\
  *        00 33 34                30 31 32\n\
  *        01 11 44                40 41 42\n\
  *\n\
  *  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the\n\
  *  transpose of RFP A above. One therefore gets:\n\
  *\n\
  *           RFP A                   RFP A\n\
  *\n\
  *     02 12 22 00 01             00 10 20 30 40 50\n\
  *     03 13 23 33 11             33 11 21 31 41 51\n\
  *     04 14 24 34 44             43 44 22 32 42 52\n\
  *\n\
  *  Reference\n\
  *  =========\n\
  *\n\
  *  =====================================================================\n\
  *\n\
  *     ..\n"