1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
---
:name: slansf
:md5sum: 014dd5ab8c3ce978110881e5d5f9d13b
:category: :function
:type: real
:arguments:
- norm:
:type: char
:intent: input
- transr:
:type: char
:intent: input
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: real
:intent: input
:dims:
- n*(n+1)/2
- work:
:type: real
:intent: workspace
:dims:
- "MAX(1,(lsame_(&norm,\"I\")||lsame_(&norm,\"1\")||lsame_(&norm,\"o\")) ? n : 0)"
:substitutions: {}
:fortran_help: " REAL FUNCTION SLANSF( NORM, TRANSR, UPLO, N, A, WORK )\n\n\
* Purpose\n\
* =======\n\
*\n\
* SLANSF returns the value of the one norm, or the Frobenius norm, or\n\
* the infinity norm, or the element of largest absolute value of a\n\
* real symmetric matrix A in RFP format.\n\
*\n\
* Description\n\
* ===========\n\
*\n\
* SLANSF returns the value\n\
*\n\
* SLANSF = ( max(abs(A(i,j))), NORM = 'M' or 'm'\n\
* (\n\
* ( norm1(A), NORM = '1', 'O' or 'o'\n\
* (\n\
* ( normI(A), NORM = 'I' or 'i'\n\
* (\n\
* ( normF(A), NORM = 'F', 'f', 'E' or 'e'\n\
*\n\
* where norm1 denotes the one norm of a matrix (maximum column sum),\n\
* normI denotes the infinity norm of a matrix (maximum row sum) and\n\
* normF denotes the Frobenius norm of a matrix (square root of sum of\n\
* squares). Note that max(abs(A(i,j))) is not a matrix norm.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* NORM (input) CHARACTER*1\n\
* Specifies the value to be returned in SLANSF as described\n\
* above.\n\
*\n\
* TRANSR (input) CHARACTER*1\n\
* Specifies whether the RFP format of A is normal or\n\
* transposed format.\n\
* = 'N': RFP format is Normal;\n\
* = 'T': RFP format is Transpose.\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* On entry, UPLO specifies whether the RFP matrix A came from\n\
* an upper or lower triangular matrix as follows:\n\
* = 'U': RFP A came from an upper triangular matrix;\n\
* = 'L': RFP A came from a lower triangular matrix.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0. When N = 0, SLANSF is\n\
* set to zero.\n\
*\n\
* A (input) REAL array, dimension ( N*(N+1)/2 );\n\
* On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L')\n\
* part of the symmetric matrix A stored in RFP format. See the\n\
* \"Notes\" below for more details.\n\
* Unchanged on exit.\n\
*\n\
* WORK (workspace) REAL array, dimension (MAX(1,LWORK)),\n\
* where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,\n\
* WORK is not referenced.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* We first consider Rectangular Full Packed (RFP) Format when N is\n\
* even. We give an example where N = 6.\n\
*\n\
* AP is Upper AP is Lower\n\
*\n\
* 00 01 02 03 04 05 00\n\
* 11 12 13 14 15 10 11\n\
* 22 23 24 25 20 21 22\n\
* 33 34 35 30 31 32 33\n\
* 44 45 40 41 42 43 44\n\
* 55 50 51 52 53 54 55\n\
*\n\
*\n\
* Let TRANSR = 'N'. RFP holds AP as follows:\n\
* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last\n\
* three columns of AP upper. The lower triangle A(4:6,0:2) consists of\n\
* the transpose of the first three columns of AP upper.\n\
* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first\n\
* three columns of AP lower. The upper triangle A(0:2,0:2) consists of\n\
* the transpose of the last three columns of AP lower.\n\
* This covers the case N even and TRANSR = 'N'.\n\
*\n\
* RFP A RFP A\n\
*\n\
* 03 04 05 33 43 53\n\
* 13 14 15 00 44 54\n\
* 23 24 25 10 11 55\n\
* 33 34 35 20 21 22\n\
* 00 44 45 30 31 32\n\
* 01 11 55 40 41 42\n\
* 02 12 22 50 51 52\n\
*\n\
* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the\n\
* transpose of RFP A above. One therefore gets:\n\
*\n\
*\n\
* RFP A RFP A\n\
*\n\
* 03 13 23 33 00 01 02 33 00 10 20 30 40 50\n\
* 04 14 24 34 44 11 12 43 44 11 21 31 41 51\n\
* 05 15 25 35 45 55 22 53 54 55 22 32 42 52\n\
*\n\
*\n\
* We then consider Rectangular Full Packed (RFP) Format when N is\n\
* odd. We give an example where N = 5.\n\
*\n\
* AP is Upper AP is Lower\n\
*\n\
* 00 01 02 03 04 00\n\
* 11 12 13 14 10 11\n\
* 22 23 24 20 21 22\n\
* 33 34 30 31 32 33\n\
* 44 40 41 42 43 44\n\
*\n\
*\n\
* Let TRANSR = 'N'. RFP holds AP as follows:\n\
* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last\n\
* three columns of AP upper. The lower triangle A(3:4,0:1) consists of\n\
* the transpose of the first two columns of AP upper.\n\
* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first\n\
* three columns of AP lower. The upper triangle A(0:1,1:2) consists of\n\
* the transpose of the last two columns of AP lower.\n\
* This covers the case N odd and TRANSR = 'N'.\n\
*\n\
* RFP A RFP A\n\
*\n\
* 02 03 04 00 33 43\n\
* 12 13 14 10 11 44\n\
* 22 23 24 20 21 22\n\
* 00 33 34 30 31 32\n\
* 01 11 44 40 41 42\n\
*\n\
* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the\n\
* transpose of RFP A above. One therefore gets:\n\
*\n\
* RFP A RFP A\n\
*\n\
* 02 12 22 00 01 00 10 20 30 40 50\n\
* 03 13 23 33 11 33 11 21 31 41 51\n\
* 04 14 24 34 44 43 44 22 32 42 52\n\
*\n\
* Reference\n\
* =========\n\
*\n\
* =====================================================================\n\
*\n\
* ..\n"
|