1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
---
:name: slarrb
:md5sum: ac43c9637a4b29c89256e616a3b9c674
:category: :subroutine
:arguments:
- n:
:type: integer
:intent: input
- d:
:type: real
:intent: input
:dims:
- n
- lld:
:type: real
:intent: input
:dims:
- n-1
- ifirst:
:type: integer
:intent: input
- ilast:
:type: integer
:intent: input
- rtol1:
:type: real
:intent: input
- rtol2:
:type: real
:intent: input
- offset:
:type: integer
:intent: input
- w:
:type: real
:intent: input/output
:dims:
- n
- wgap:
:type: real
:intent: input/output
:dims:
- n-1
- werr:
:type: real
:intent: input/output
:dims:
- n
- work:
:type: real
:intent: workspace
:dims:
- 2*n
- iwork:
:type: integer
:intent: workspace
:dims:
- 2*n
- pivmin:
:type: real
:intent: input
- spdiam:
:type: real
:intent: input
- twist:
:type: integer
:intent: input
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE SLARRB( N, D, LLD, IFIRST, ILAST, RTOL1, RTOL2, OFFSET, W, WGAP, WERR, WORK, IWORK, PIVMIN, SPDIAM, TWIST, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* Given the relatively robust representation(RRR) L D L^T, SLARRB\n\
* does \"limited\" bisection to refine the eigenvalues of L D L^T,\n\
* W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial\n\
* guesses for these eigenvalues are input in W, the corresponding estimate\n\
* of the error in these guesses and their gaps are input in WERR\n\
* and WGAP, respectively. During bisection, intervals\n\
* [left, right] are maintained by storing their mid-points and\n\
* semi-widths in the arrays W and WERR respectively.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix.\n\
*\n\
* D (input) REAL array, dimension (N)\n\
* The N diagonal elements of the diagonal matrix D.\n\
*\n\
* LLD (input) REAL array, dimension (N-1)\n\
* The (N-1) elements L(i)*L(i)*D(i).\n\
*\n\
* IFIRST (input) INTEGER\n\
* The index of the first eigenvalue to be computed.\n\
*\n\
* ILAST (input) INTEGER\n\
* The index of the last eigenvalue to be computed.\n\
*\n\
* RTOL1 (input) REAL \n\
* RTOL2 (input) REAL \n\
* Tolerance for the convergence of the bisection intervals.\n\
* An interval [LEFT,RIGHT] has converged if\n\
* RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )\n\
* where GAP is the (estimated) distance to the nearest\n\
* eigenvalue.\n\
*\n\
* OFFSET (input) INTEGER\n\
* Offset for the arrays W, WGAP and WERR, i.e., the IFIRST-OFFSET\n\
* through ILAST-OFFSET elements of these arrays are to be used.\n\
*\n\
* W (input/output) REAL array, dimension (N)\n\
* On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are\n\
* estimates of the eigenvalues of L D L^T indexed IFIRST throug\n\
* ILAST.\n\
* On output, these estimates are refined.\n\
*\n\
* WGAP (input/output) REAL array, dimension (N-1)\n\
* On input, the (estimated) gaps between consecutive\n\
* eigenvalues of L D L^T, i.e., WGAP(I-OFFSET) is the gap between\n\
* eigenvalues I and I+1. Note that if IFIRST.EQ.ILAST\n\
* then WGAP(IFIRST-OFFSET) must be set to ZERO.\n\
* On output, these gaps are refined.\n\
*\n\
* WERR (input/output) REAL array, dimension (N)\n\
* On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are\n\
* the errors in the estimates of the corresponding elements in W.\n\
* On output, these errors are refined.\n\
*\n\
* WORK (workspace) REAL array, dimension (2*N)\n\
* Workspace.\n\
*\n\
* IWORK (workspace) INTEGER array, dimension (2*N)\n\
* Workspace.\n\
*\n\
* PIVMIN (input) REAL\n\
* The minimum pivot in the Sturm sequence.\n\
*\n\
* SPDIAM (input) REAL\n\
* The spectral diameter of the matrix.\n\
*\n\
* TWIST (input) INTEGER\n\
* The twist index for the twisted factorization that is used\n\
* for the negcount.\n\
* TWIST = N: Compute negcount from L D L^T - LAMBDA I = L+ D+ L+^T\n\
* TWIST = 1: Compute negcount from L D L^T - LAMBDA I = U- D- U-^T\n\
* TWIST = R: Compute negcount from L D L^T - LAMBDA I = N(r) D(r) N(r)\n\
*\n\
* INFO (output) INTEGER\n\
* Error flag.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* Based on contributions by\n\
* Beresford Parlett, University of California, Berkeley, USA\n\
* Jim Demmel, University of California, Berkeley, USA\n\
* Inderjit Dhillon, University of Texas, Austin, USA\n\
* Osni Marques, LBNL/NERSC, USA\n\
* Christof Voemel, University of California, Berkeley, USA\n\
*\n\
* =====================================================================\n\
*\n"
|