File: slas2

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (71 lines) | stat: -rwxr-xr-x 2,064 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
--- 
:name: slas2
:md5sum: c614a835281cb4cc90907af6ff259ba5
:category: :subroutine
:arguments: 
- f: 
    :type: real
    :intent: input
- g: 
    :type: real
    :intent: input
- h: 
    :type: real
    :intent: input
- ssmin: 
    :type: real
    :intent: output
- ssmax: 
    :type: real
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE SLAS2( F, G, H, SSMIN, SSMAX )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  SLAS2  computes the singular values of the 2-by-2 matrix\n\
  *     [  F   G  ]\n\
  *     [  0   H  ].\n\
  *  On return, SSMIN is the smaller singular value and SSMAX is the\n\
  *  larger singular value.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  F       (input) REAL\n\
  *          The (1,1) element of the 2-by-2 matrix.\n\
  *\n\
  *  G       (input) REAL\n\
  *          The (1,2) element of the 2-by-2 matrix.\n\
  *\n\
  *  H       (input) REAL\n\
  *          The (2,2) element of the 2-by-2 matrix.\n\
  *\n\
  *  SSMIN   (output) REAL\n\
  *          The smaller singular value.\n\
  *\n\
  *  SSMAX   (output) REAL\n\
  *          The larger singular value.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  Barring over/underflow, all output quantities are correct to within\n\
  *  a few units in the last place (ulps), even in the absence of a guard\n\
  *  digit in addition/subtraction.\n\
  *\n\
  *  In IEEE arithmetic, the code works correctly if one matrix element is\n\
  *  infinite.\n\
  *\n\
  *  Overflow will not occur unless the largest singular value itself\n\
  *  overflows, or is within a few ulps of overflow. (On machines with\n\
  *  partial overflow, like the Cray, overflow may occur if the largest\n\
  *  singular value is within a factor of 2 of overflow.)\n\
  *\n\
  *  Underflow is harmless if underflow is gradual. Otherwise, results\n\
  *  may correspond to a matrix modified by perturbations of size near\n\
  *  the underflow threshold.\n\
  *\n\
  *  ====================================================================\n\
  *\n"