1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
---
:name: slasr
:md5sum: ff809128ca416b4d7f92c1ccd028ba23
:category: :subroutine
:arguments:
- side:
:type: char
:intent: input
- pivot:
:type: char
:intent: input
- direct:
:type: char
:intent: input
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- c:
:type: real
:intent: input
:dims:
- m-1
- s:
:type: real
:intent: input
:dims:
- m-1
- a:
:type: real
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
:substitutions: {}
:fortran_help: " SUBROUTINE SLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )\n\n\
* Purpose\n\
* =======\n\
*\n\
* SLASR applies a sequence of plane rotations to a real matrix A,\n\
* from either the left or the right.\n\
* \n\
* When SIDE = 'L', the transformation takes the form\n\
* \n\
* A := P*A\n\
* \n\
* and when SIDE = 'R', the transformation takes the form\n\
* \n\
* A := A*P**T\n\
* \n\
* where P is an orthogonal matrix consisting of a sequence of z plane\n\
* rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',\n\
* and P**T is the transpose of P.\n\
* \n\
* When DIRECT = 'F' (Forward sequence), then\n\
* \n\
* P = P(z-1) * ... * P(2) * P(1)\n\
* \n\
* and when DIRECT = 'B' (Backward sequence), then\n\
* \n\
* P = P(1) * P(2) * ... * P(z-1)\n\
* \n\
* where P(k) is a plane rotation matrix defined by the 2-by-2 rotation\n\
* \n\
* R(k) = ( c(k) s(k) )\n\
* = ( -s(k) c(k) ).\n\
* \n\
* When PIVOT = 'V' (Variable pivot), the rotation is performed\n\
* for the plane (k,k+1), i.e., P(k) has the form\n\
* \n\
* P(k) = ( 1 )\n\
* ( ... )\n\
* ( 1 )\n\
* ( c(k) s(k) )\n\
* ( -s(k) c(k) )\n\
* ( 1 )\n\
* ( ... )\n\
* ( 1 )\n\
* \n\
* where R(k) appears as a rank-2 modification to the identity matrix in\n\
* rows and columns k and k+1.\n\
* \n\
* When PIVOT = 'T' (Top pivot), the rotation is performed for the\n\
* plane (1,k+1), so P(k) has the form\n\
* \n\
* P(k) = ( c(k) s(k) )\n\
* ( 1 )\n\
* ( ... )\n\
* ( 1 )\n\
* ( -s(k) c(k) )\n\
* ( 1 )\n\
* ( ... )\n\
* ( 1 )\n\
* \n\
* where R(k) appears in rows and columns 1 and k+1.\n\
* \n\
* Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is\n\
* performed for the plane (k,z), giving P(k) the form\n\
* \n\
* P(k) = ( 1 )\n\
* ( ... )\n\
* ( 1 )\n\
* ( c(k) s(k) )\n\
* ( 1 )\n\
* ( ... )\n\
* ( 1 )\n\
* ( -s(k) c(k) )\n\
* \n\
* where R(k) appears in rows and columns k and z. The rotations are\n\
* performed without ever forming P(k) explicitly.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* SIDE (input) CHARACTER*1\n\
* Specifies whether the plane rotation matrix P is applied to\n\
* A on the left or the right.\n\
* = 'L': Left, compute A := P*A\n\
* = 'R': Right, compute A:= A*P**T\n\
*\n\
* PIVOT (input) CHARACTER*1\n\
* Specifies the plane for which P(k) is a plane rotation\n\
* matrix.\n\
* = 'V': Variable pivot, the plane (k,k+1)\n\
* = 'T': Top pivot, the plane (1,k+1)\n\
* = 'B': Bottom pivot, the plane (k,z)\n\
*\n\
* DIRECT (input) CHARACTER*1\n\
* Specifies whether P is a forward or backward sequence of\n\
* plane rotations.\n\
* = 'F': Forward, P = P(z-1)*...*P(2)*P(1)\n\
* = 'B': Backward, P = P(1)*P(2)*...*P(z-1)\n\
*\n\
* M (input) INTEGER\n\
* The number of rows of the matrix A. If m <= 1, an immediate\n\
* return is effected.\n\
*\n\
* N (input) INTEGER\n\
* The number of columns of the matrix A. If n <= 1, an\n\
* immediate return is effected.\n\
*\n\
* C (input) REAL array, dimension\n\
* (M-1) if SIDE = 'L'\n\
* (N-1) if SIDE = 'R'\n\
* The cosines c(k) of the plane rotations.\n\
*\n\
* S (input) REAL array, dimension\n\
* (M-1) if SIDE = 'L'\n\
* (N-1) if SIDE = 'R'\n\
* The sines s(k) of the plane rotations. The 2-by-2 plane\n\
* rotation part of the matrix P(k), R(k), has the form\n\
* R(k) = ( c(k) s(k) )\n\
* ( -s(k) c(k) ).\n\
*\n\
* A (input/output) REAL array, dimension (LDA,N)\n\
* The M-by-N matrix A. On exit, A is overwritten by P*A if\n\
* SIDE = 'R' or by A*P**T if SIDE = 'L'.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,M).\n\
*\n\n\
* =====================================================================\n\
*\n"
|