File: sorghr

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (97 lines) | stat: -rwxr-xr-x 2,940 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
--- 
:name: sorghr
:md5sum: 15d5df3b0bf735669e7d3581fa3c5dcb
:category: :subroutine
:arguments: 
- n: 
    :type: integer
    :intent: input
- ilo: 
    :type: integer
    :intent: input
- ihi: 
    :type: integer
    :intent: input
- a: 
    :type: real
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- tau: 
    :type: real
    :intent: input
    :dims: 
    - n-1
- work: 
    :type: real
    :intent: output
    :dims: 
    - MAX(1,lwork)
- lwork: 
    :type: integer
    :intent: input
    :option: true
    :default: ihi-ilo
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE SORGHR( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  SORGHR generates a real orthogonal matrix Q which is defined as the\n\
  *  product of IHI-ILO elementary reflectors of order N, as returned by\n\
  *  SGEHRD:\n\
  *\n\
  *  Q = H(ilo) H(ilo+1) . . . H(ihi-1).\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix Q. N >= 0.\n\
  *\n\
  *  ILO     (input) INTEGER\n\
  *  IHI     (input) INTEGER\n\
  *          ILO and IHI must have the same values as in the previous call\n\
  *          of SGEHRD. Q is equal to the unit matrix except in the\n\
  *          submatrix Q(ilo+1:ihi,ilo+1:ihi).\n\
  *          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.\n\
  *\n\
  *  A       (input/output) REAL array, dimension (LDA,N)\n\
  *          On entry, the vectors which define the elementary reflectors,\n\
  *          as returned by SGEHRD.\n\
  *          On exit, the N-by-N orthogonal matrix Q.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A. LDA >= max(1,N).\n\
  *\n\
  *  TAU     (input) REAL array, dimension (N-1)\n\
  *          TAU(i) must contain the scalar factor of the elementary\n\
  *          reflector H(i), as returned by SGEHRD.\n\
  *\n\
  *  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))\n\
  *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
  *\n\
  *  LWORK   (input) INTEGER\n\
  *          The dimension of the array WORK. LWORK >= IHI-ILO.\n\
  *          For optimum performance LWORK >= (IHI-ILO)*NB, where NB is\n\
  *          the optimal blocksize.\n\
  *\n\
  *          If LWORK = -1, then a workspace query is assumed; the routine\n\
  *          only calculates the optimal size of the WORK array, returns\n\
  *          this value as the first entry of the WORK array, and no error\n\
  *          message related to LWORK is issued by XERBLA.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"