File: sormbr

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (176 lines) | stat: -rwxr-xr-x 6,164 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
--- 
:name: sormbr
:md5sum: 30eacbb06a36a13208c27693866dce81
:category: :subroutine
:arguments: 
- vect: 
    :type: char
    :intent: input
- side: 
    :type: char
    :intent: input
- trans: 
    :type: char
    :intent: input
- m: 
    :type: integer
    :intent: input
- n: 
    :type: integer
    :intent: input
- k: 
    :type: integer
    :intent: input
- a: 
    :type: real
    :intent: input
    :dims: 
    - lda
    - MIN(nq,k)
- lda: 
    :type: integer
    :intent: input
- tau: 
    :type: real
    :intent: input
    :dims: 
    - MIN(nq,k)
- c: 
    :type: real
    :intent: input/output
    :dims: 
    - ldc
    - n
- ldc: 
    :type: integer
    :intent: input
- work: 
    :type: real
    :intent: output
    :dims: 
    - MAX(1,lwork)
- lwork: 
    :type: integer
    :intent: input
    :option: true
    :default: "lsame_(&side,\"L\") ? n : lsame_(&side,\"R\") ? m : 0"
- info: 
    :type: integer
    :intent: output
:substitutions: 
  nq: "lsame_(&side,\"L\") ? m : lsame_(&side,\"R\") ? n : 0"
:fortran_help: "      SUBROUTINE SORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  If VECT = 'Q', SORMBR overwrites the general real M-by-N matrix C\n\
  *  with\n\
  *                  SIDE = 'L'     SIDE = 'R'\n\
  *  TRANS = 'N':      Q * C          C * Q\n\
  *  TRANS = 'T':      Q**T * C       C * Q**T\n\
  *\n\
  *  If VECT = 'P', SORMBR overwrites the general real M-by-N matrix C\n\
  *  with\n\
  *                  SIDE = 'L'     SIDE = 'R'\n\
  *  TRANS = 'N':      P * C          C * P\n\
  *  TRANS = 'T':      P**T * C       C * P**T\n\
  *\n\
  *  Here Q and P**T are the orthogonal matrices determined by SGEBRD when\n\
  *  reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and\n\
  *  P**T are defined as products of elementary reflectors H(i) and G(i)\n\
  *  respectively.\n\
  *\n\
  *  Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the\n\
  *  order of the orthogonal matrix Q or P**T that is applied.\n\
  *\n\
  *  If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:\n\
  *  if nq >= k, Q = H(1) H(2) . . . H(k);\n\
  *  if nq < k, Q = H(1) H(2) . . . H(nq-1).\n\
  *\n\
  *  If VECT = 'P', A is assumed to have been a K-by-NQ matrix:\n\
  *  if k < nq, P = G(1) G(2) . . . G(k);\n\
  *  if k >= nq, P = G(1) G(2) . . . G(nq-1).\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  VECT    (input) CHARACTER*1\n\
  *          = 'Q': apply Q or Q**T;\n\
  *          = 'P': apply P or P**T.\n\
  *\n\
  *  SIDE    (input) CHARACTER*1\n\
  *          = 'L': apply Q, Q**T, P or P**T from the Left;\n\
  *          = 'R': apply Q, Q**T, P or P**T from the Right.\n\
  *\n\
  *  TRANS   (input) CHARACTER*1\n\
  *          = 'N':  No transpose, apply Q  or P;\n\
  *          = 'T':  Transpose, apply Q**T or P**T.\n\
  *\n\
  *  M       (input) INTEGER\n\
  *          The number of rows of the matrix C. M >= 0.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of columns of the matrix C. N >= 0.\n\
  *\n\
  *  K       (input) INTEGER\n\
  *          If VECT = 'Q', the number of columns in the original\n\
  *          matrix reduced by SGEBRD.\n\
  *          If VECT = 'P', the number of rows in the original\n\
  *          matrix reduced by SGEBRD.\n\
  *          K >= 0.\n\
  *\n\
  *  A       (input) REAL array, dimension\n\
  *                                (LDA,min(nq,K)) if VECT = 'Q'\n\
  *                                (LDA,nq)        if VECT = 'P'\n\
  *          The vectors which define the elementary reflectors H(i) and\n\
  *          G(i), whose products determine the matrices Q and P, as\n\
  *          returned by SGEBRD.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.\n\
  *          If VECT = 'Q', LDA >= max(1,nq);\n\
  *          if VECT = 'P', LDA >= max(1,min(nq,K)).\n\
  *\n\
  *  TAU     (input) REAL array, dimension (min(nq,K))\n\
  *          TAU(i) must contain the scalar factor of the elementary\n\
  *          reflector H(i) or G(i) which determines Q or P, as returned\n\
  *          by SGEBRD in the array argument TAUQ or TAUP.\n\
  *\n\
  *  C       (input/output) REAL array, dimension (LDC,N)\n\
  *          On entry, the M-by-N matrix C.\n\
  *          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q\n\
  *          or P*C or P**T*C or C*P or C*P**T.\n\
  *\n\
  *  LDC     (input) INTEGER\n\
  *          The leading dimension of the array C. LDC >= max(1,M).\n\
  *\n\
  *  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))\n\
  *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
  *\n\
  *  LWORK   (input) INTEGER\n\
  *          The dimension of the array WORK.\n\
  *          If SIDE = 'L', LWORK >= max(1,N);\n\
  *          if SIDE = 'R', LWORK >= max(1,M).\n\
  *          For optimum performance LWORK >= N*NB if SIDE = 'L', and\n\
  *          LWORK >= M*NB if SIDE = 'R', where NB is the optimal\n\
  *          blocksize.\n\
  *\n\
  *          If LWORK = -1, then a workspace query is assumed; the routine\n\
  *          only calculates the optimal size of the WORK array, returns\n\
  *          this value as the first entry of the WORK array, and no error\n\
  *          message related to LWORK is issued by XERBLA.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *\n\n\
  *  =====================================================================\n\
  *\n\
  *     .. Local Scalars ..\n      LOGICAL            APPLYQ, LEFT, LQUERY, NOTRAN\n      CHARACTER          TRANST\n      INTEGER            I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW\n\
  *     ..\n\
  *     .. External Functions ..\n      LOGICAL            LSAME\n      INTEGER            ILAENV\n      EXTERNAL           ILAENV, LSAME\n\
  *     ..\n\
  *     .. External Subroutines ..\n      EXTERNAL           SORMLQ, SORMQR, XERBLA\n\
  *     ..\n\
  *     .. Intrinsic Functions ..\n      INTRINSIC          MAX, MIN\n\
  *     ..\n"