1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
---
:name: sormlq
:md5sum: 9d63f013e5f6db69178cf57382540251
:category: :subroutine
:arguments:
- side:
:type: char
:intent: input
- trans:
:type: char
:intent: input
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- k:
:type: integer
:intent: input
- a:
:type: real
:intent: input
:dims:
- lda
- m
- lda:
:type: integer
:intent: input
- tau:
:type: real
:intent: input
:dims:
- k
- c:
:type: real
:intent: input/output
:dims:
- ldc
- n
- ldc:
:type: integer
:intent: input
- work:
:type: real
:intent: output
:dims:
- MAX(1,lwork)
- lwork:
:type: integer
:intent: input
:option: true
:default: "lsame_(&side,\"L\") ? n : lsame_(&side,\"R\") ? m : 0"
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE SORMLQ( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* SORMLQ overwrites the general real M-by-N matrix C with\n\
*\n\
* SIDE = 'L' SIDE = 'R'\n\
* TRANS = 'N': Q * C C * Q\n\
* TRANS = 'T': Q**T * C C * Q**T\n\
*\n\
* where Q is a real orthogonal matrix defined as the product of k\n\
* elementary reflectors\n\
*\n\
* Q = H(k) . . . H(2) H(1)\n\
*\n\
* as returned by SGELQF. Q is of order M if SIDE = 'L' and of order N\n\
* if SIDE = 'R'.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* SIDE (input) CHARACTER*1\n\
* = 'L': apply Q or Q**T from the Left;\n\
* = 'R': apply Q or Q**T from the Right.\n\
*\n\
* TRANS (input) CHARACTER*1\n\
* = 'N': No transpose, apply Q;\n\
* = 'T': Transpose, apply Q**T.\n\
*\n\
* M (input) INTEGER\n\
* The number of rows of the matrix C. M >= 0.\n\
*\n\
* N (input) INTEGER\n\
* The number of columns of the matrix C. N >= 0.\n\
*\n\
* K (input) INTEGER\n\
* The number of elementary reflectors whose product defines\n\
* the matrix Q.\n\
* If SIDE = 'L', M >= K >= 0;\n\
* if SIDE = 'R', N >= K >= 0.\n\
*\n\
* A (input) REAL array, dimension\n\
* (LDA,M) if SIDE = 'L',\n\
* (LDA,N) if SIDE = 'R'\n\
* The i-th row must contain the vector which defines the\n\
* elementary reflector H(i), for i = 1,2,...,k, as returned by\n\
* SGELQF in the first k rows of its array argument A.\n\
* A is modified by the routine but restored on exit.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,K).\n\
*\n\
* TAU (input) REAL array, dimension (K)\n\
* TAU(i) must contain the scalar factor of the elementary\n\
* reflector H(i), as returned by SGELQF.\n\
*\n\
* C (input/output) REAL array, dimension (LDC,N)\n\
* On entry, the M-by-N matrix C.\n\
* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.\n\
*\n\
* LDC (input) INTEGER\n\
* The leading dimension of the array C. LDC >= max(1,M).\n\
*\n\
* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))\n\
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
*\n\
* LWORK (input) INTEGER\n\
* The dimension of the array WORK.\n\
* If SIDE = 'L', LWORK >= max(1,N);\n\
* if SIDE = 'R', LWORK >= max(1,M).\n\
* For optimum performance LWORK >= N*NB if SIDE = 'L', and\n\
* LWORK >= M*NB if SIDE = 'R', where NB is the optimal\n\
* blocksize.\n\
*\n\
* If LWORK = -1, then a workspace query is assumed; the routine\n\
* only calculates the optimal size of the WORK array, returns\n\
* this value as the first entry of the WORK array, and no error\n\
* message related to LWORK is issued by XERBLA.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
*\n\n\
* =====================================================================\n\
*\n"
|