1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
---
:name: spftrf
:md5sum: d1c6046e8099759e3e26aad67c90017d
:category: :subroutine
:arguments:
- transr:
:type: char
:intent: input
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: real
:intent: input/output
:dims:
- n*(n+1)/2
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE SPFTRF( TRANSR, UPLO, N, A, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* SPFTRF computes the Cholesky factorization of a real symmetric\n\
* positive definite matrix A.\n\
*\n\
* The factorization has the form\n\
* A = U**T * U, if UPLO = 'U', or\n\
* A = L * L**T, if UPLO = 'L',\n\
* where U is an upper triangular matrix and L is lower triangular.\n\
*\n\
* This is the block version of the algorithm, calling Level 3 BLAS.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* TRANSR (input) CHARACTER*1\n\
* = 'N': The Normal TRANSR of RFP A is stored;\n\
* = 'T': The Transpose TRANSR of RFP A is stored.\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': Upper triangle of RFP A is stored;\n\
* = 'L': Lower triangle of RFP A is stored.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* A (input/output) REAL array, dimension ( N*(N+1)/2 );\n\
* On entry, the symmetric matrix A in RFP format. RFP format is\n\
* described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'\n\
* then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is\n\
* (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is\n\
* the transpose of RFP A as defined when\n\
* TRANSR = 'N'. The contents of RFP A are defined by UPLO as\n\
* follows: If UPLO = 'U' the RFP A contains the NT elements of\n\
* upper packed A. If UPLO = 'L' the RFP A contains the elements\n\
* of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =\n\
* 'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N\n\
* is odd. See the Note below for more details.\n\
*\n\
* On exit, if INFO = 0, the factor U or L from the Cholesky\n\
* factorization RFP A = U**T*U or RFP A = L*L**T.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
* > 0: if INFO = i, the leading minor of order i is not\n\
* positive definite, and the factorization could not be\n\
* completed.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* We first consider Rectangular Full Packed (RFP) Format when N is\n\
* even. We give an example where N = 6.\n\
*\n\
* AP is Upper AP is Lower\n\
*\n\
* 00 01 02 03 04 05 00\n\
* 11 12 13 14 15 10 11\n\
* 22 23 24 25 20 21 22\n\
* 33 34 35 30 31 32 33\n\
* 44 45 40 41 42 43 44\n\
* 55 50 51 52 53 54 55\n\
*\n\
*\n\
* Let TRANSR = 'N'. RFP holds AP as follows:\n\
* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last\n\
* three columns of AP upper. The lower triangle A(4:6,0:2) consists of\n\
* the transpose of the first three columns of AP upper.\n\
* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first\n\
* three columns of AP lower. The upper triangle A(0:2,0:2) consists of\n\
* the transpose of the last three columns of AP lower.\n\
* This covers the case N even and TRANSR = 'N'.\n\
*\n\
* RFP A RFP A\n\
*\n\
* 03 04 05 33 43 53\n\
* 13 14 15 00 44 54\n\
* 23 24 25 10 11 55\n\
* 33 34 35 20 21 22\n\
* 00 44 45 30 31 32\n\
* 01 11 55 40 41 42\n\
* 02 12 22 50 51 52\n\
*\n\
* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the\n\
* transpose of RFP A above. One therefore gets:\n\
*\n\
*\n\
* RFP A RFP A\n\
*\n\
* 03 13 23 33 00 01 02 33 00 10 20 30 40 50\n\
* 04 14 24 34 44 11 12 43 44 11 21 31 41 51\n\
* 05 15 25 35 45 55 22 53 54 55 22 32 42 52\n\
*\n\
*\n\
* We then consider Rectangular Full Packed (RFP) Format when N is\n\
* odd. We give an example where N = 5.\n\
*\n\
* AP is Upper AP is Lower\n\
*\n\
* 00 01 02 03 04 00\n\
* 11 12 13 14 10 11\n\
* 22 23 24 20 21 22\n\
* 33 34 30 31 32 33\n\
* 44 40 41 42 43 44\n\
*\n\
*\n\
* Let TRANSR = 'N'. RFP holds AP as follows:\n\
* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last\n\
* three columns of AP upper. The lower triangle A(3:4,0:1) consists of\n\
* the transpose of the first two columns of AP upper.\n\
* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first\n\
* three columns of AP lower. The upper triangle A(0:1,1:2) consists of\n\
* the transpose of the last two columns of AP lower.\n\
* This covers the case N odd and TRANSR = 'N'.\n\
*\n\
* RFP A RFP A\n\
*\n\
* 02 03 04 00 33 43\n\
* 12 13 14 10 11 44\n\
* 22 23 24 20 21 22\n\
* 00 33 34 30 31 32\n\
* 01 11 44 40 41 42\n\
*\n\
* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the\n\
* transpose of RFP A above. One therefore gets:\n\
*\n\
* RFP A RFP A\n\
*\n\
* 02 12 22 00 01 00 10 20 30 40 50\n\
* 03 13 23 33 11 33 11 21 31 41 51\n\
* 04 14 24 34 44 43 44 22 32 42 52\n\
*\n\
* =====================================================================\n\
*\n"
|