1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
---
:name: sptrfs
:md5sum: 4ecbb01d7ec0c479ca08bee758afed59
:category: :subroutine
:arguments:
- n:
:type: integer
:intent: input
- nrhs:
:type: integer
:intent: input
- d:
:type: real
:intent: input
:dims:
- n
- e:
:type: real
:intent: input
:dims:
- n-1
- df:
:type: real
:intent: input
:dims:
- n
- ef:
:type: real
:intent: input
:dims:
- n-1
- b:
:type: real
:intent: input
:dims:
- ldb
- nrhs
- ldb:
:type: integer
:intent: input
- x:
:type: real
:intent: input/output
:dims:
- ldx
- nrhs
- ldx:
:type: integer
:intent: input
- ferr:
:type: real
:intent: output
:dims:
- nrhs
- berr:
:type: real
:intent: output
:dims:
- nrhs
- work:
:type: real
:intent: workspace
:dims:
- 2*n
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE SPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, BERR, WORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* SPTRFS improves the computed solution to a system of linear\n\
* equations when the coefficient matrix is symmetric positive definite\n\
* and tridiagonal, and provides error bounds and backward error\n\
* estimates for the solution.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* NRHS (input) INTEGER\n\
* The number of right hand sides, i.e., the number of columns\n\
* of the matrix B. NRHS >= 0.\n\
*\n\
* D (input) REAL array, dimension (N)\n\
* The n diagonal elements of the tridiagonal matrix A.\n\
*\n\
* E (input) REAL array, dimension (N-1)\n\
* The (n-1) subdiagonal elements of the tridiagonal matrix A.\n\
*\n\
* DF (input) REAL array, dimension (N)\n\
* The n diagonal elements of the diagonal matrix D from the\n\
* factorization computed by SPTTRF.\n\
*\n\
* EF (input) REAL array, dimension (N-1)\n\
* The (n-1) subdiagonal elements of the unit bidiagonal factor\n\
* L from the factorization computed by SPTTRF.\n\
*\n\
* B (input) REAL array, dimension (LDB,NRHS)\n\
* The right hand side matrix B.\n\
*\n\
* LDB (input) INTEGER\n\
* The leading dimension of the array B. LDB >= max(1,N).\n\
*\n\
* X (input/output) REAL array, dimension (LDX,NRHS)\n\
* On entry, the solution matrix X, as computed by SPTTRS.\n\
* On exit, the improved solution matrix X.\n\
*\n\
* LDX (input) INTEGER\n\
* The leading dimension of the array X. LDX >= max(1,N).\n\
*\n\
* FERR (output) REAL array, dimension (NRHS)\n\
* The forward error bound for each solution vector\n\
* X(j) (the j-th column of the solution matrix X).\n\
* If XTRUE is the true solution corresponding to X(j), FERR(j)\n\
* is an estimated upper bound for the magnitude of the largest\n\
* element in (X(j) - XTRUE) divided by the magnitude of the\n\
* largest element in X(j).\n\
*\n\
* BERR (output) REAL array, dimension (NRHS)\n\
* The componentwise relative backward error of each solution\n\
* vector X(j) (i.e., the smallest relative change in\n\
* any element of A or B that makes X(j) an exact solution).\n\
*\n\
* WORK (workspace) REAL array, dimension (2*N)\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
*\n\
* Internal Parameters\n\
* ===================\n\
*\n\
* ITMAX is the maximum number of steps of iterative refinement.\n\
*\n\n\
* =====================================================================\n\
*\n"
|