1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
---
:name: ssbevd
:md5sum: 71100f8057bbfe6a4838357d0d1b2105
:category: :subroutine
:arguments:
- jobz:
:type: char
:intent: input
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- kd:
:type: integer
:intent: input
- ab:
:type: real
:intent: input/output
:dims:
- ldab
- n
- ldab:
:type: integer
:intent: input
- w:
:type: real
:intent: output
:dims:
- n
- z:
:type: real
:intent: output
:dims:
- ldz
- n
- ldz:
:type: integer
:intent: input
- work:
:type: real
:intent: output
:dims:
- MAX(1,lwork)
- lwork:
:type: integer
:intent: input
:option: true
:default: "n<=0 ? 1 : lsame_(&jobz,\"N\") ? 2*n : lsame_(&jobz,\"V\") ? 1+5*n+2*n*n : 0"
- iwork:
:type: integer
:intent: output
:dims:
- MAX(1,liwork)
- liwork:
:type: integer
:intent: input
:option: true
:default: "(lsame_(&jobz,\"N\")||n<=0) ? 1 : lsame_(&jobz,\"V\") ? 3+5*n : 0"
- info:
:type: integer
:intent: output
:substitutions:
ldz: "lsame_(&jobz,\"V\") ? MAX(1,n) : 1"
:fortran_help: " SUBROUTINE SSBEVD( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* SSBEVD computes all the eigenvalues and, optionally, eigenvectors of\n\
* a real symmetric band matrix A. If eigenvectors are desired, it uses\n\
* a divide and conquer algorithm.\n\
*\n\
* The divide and conquer algorithm makes very mild assumptions about\n\
* floating point arithmetic. It will work on machines with a guard\n\
* digit in add/subtract, or on those binary machines without guard\n\
* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or\n\
* Cray-2. It could conceivably fail on hexadecimal or decimal machines\n\
* without guard digits, but we know of none.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* JOBZ (input) CHARACTER*1\n\
* = 'N': Compute eigenvalues only;\n\
* = 'V': Compute eigenvalues and eigenvectors.\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': Upper triangle of A is stored;\n\
* = 'L': Lower triangle of A is stored.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* KD (input) INTEGER\n\
* The number of superdiagonals of the matrix A if UPLO = 'U',\n\
* or the number of subdiagonals if UPLO = 'L'. KD >= 0.\n\
*\n\
* AB (input/output) REAL array, dimension (LDAB, N)\n\
* On entry, the upper or lower triangle of the symmetric band\n\
* matrix A, stored in the first KD+1 rows of the array. The\n\
* j-th column of A is stored in the j-th column of the array AB\n\
* as follows:\n\
* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;\n\
* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).\n\
*\n\
* On exit, AB is overwritten by values generated during the\n\
* reduction to tridiagonal form. If UPLO = 'U', the first\n\
* superdiagonal and the diagonal of the tridiagonal matrix T\n\
* are returned in rows KD and KD+1 of AB, and if UPLO = 'L',\n\
* the diagonal and first subdiagonal of T are returned in the\n\
* first two rows of AB.\n\
*\n\
* LDAB (input) INTEGER\n\
* The leading dimension of the array AB. LDAB >= KD + 1.\n\
*\n\
* W (output) REAL array, dimension (N)\n\
* If INFO = 0, the eigenvalues in ascending order.\n\
*\n\
* Z (output) REAL array, dimension (LDZ, N)\n\
* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal\n\
* eigenvectors of the matrix A, with the i-th column of Z\n\
* holding the eigenvector associated with W(i).\n\
* If JOBZ = 'N', then Z is not referenced.\n\
*\n\
* LDZ (input) INTEGER\n\
* The leading dimension of the array Z. LDZ >= 1, and if\n\
* JOBZ = 'V', LDZ >= max(1,N).\n\
*\n\
* WORK (workspace/output) REAL array,\n\
* dimension (LWORK)\n\
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
*\n\
* LWORK (input) INTEGER\n\
* The dimension of the array WORK.\n\
* IF N <= 1, LWORK must be at least 1.\n\
* If JOBZ = 'N' and N > 2, LWORK must be at least 2*N.\n\
* If JOBZ = 'V' and N > 2, LWORK must be at least\n\
* ( 1 + 5*N + 2*N**2 ).\n\
*\n\
* If LWORK = -1, then a workspace query is assumed; the routine\n\
* only calculates the optimal sizes of the WORK and IWORK\n\
* arrays, returns these values as the first entries of the WORK\n\
* and IWORK arrays, and no error message related to LWORK or\n\
* LIWORK is issued by XERBLA.\n\
*\n\
* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))\n\
* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.\n\
*\n\
* LIWORK (input) INTEGER\n\
* The dimension of the array LIWORK.\n\
* If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.\n\
* If JOBZ = 'V' and N > 2, LIWORK must be at least 3 + 5*N.\n\
*\n\
* If LIWORK = -1, then a workspace query is assumed; the\n\
* routine only calculates the optimal sizes of the WORK and\n\
* IWORK arrays, returns these values as the first entries of\n\
* the WORK and IWORK arrays, and no error message related to\n\
* LWORK or LIWORK is issued by XERBLA.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
* > 0: if INFO = i, the algorithm failed to converge; i\n\
* off-diagonal elements of an intermediate tridiagonal\n\
* form did not converge to zero.\n\
*\n\n\
* =====================================================================\n\
*\n"
|