File: sspgst

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (80 lines) | stat: -rwxr-xr-x 2,619 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
--- 
:name: sspgst
:md5sum: 33ef68fb9b8c97de9d8d99a2aa5d9f90
:category: :subroutine
:arguments: 
- itype: 
    :type: integer
    :intent: input
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- ap: 
    :type: real
    :intent: input/output
    :dims: 
    - n*(n+1)/2
- bp: 
    :type: real
    :intent: input
    :dims: 
    - n*(n+1)/2
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE SSPGST( ITYPE, UPLO, N, AP, BP, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  SSPGST reduces a real symmetric-definite generalized eigenproblem\n\
  *  to standard form, using packed storage.\n\
  *\n\
  *  If ITYPE = 1, the problem is A*x = lambda*B*x,\n\
  *  and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)\n\
  *\n\
  *  If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or\n\
  *  B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.\n\
  *\n\
  *  B must have been previously factorized as U**T*U or L*L**T by SPPTRF.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  ITYPE   (input) INTEGER\n\
  *          = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);\n\
  *          = 2 or 3: compute U*A*U**T or L**T*A*L.\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          = 'U':  Upper triangle of A is stored and B is factored as\n\
  *                  U**T*U;\n\
  *          = 'L':  Lower triangle of A is stored and B is factored as\n\
  *                  L*L**T.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrices A and B.  N >= 0.\n\
  *\n\
  *  AP      (input/output) REAL array, dimension (N*(N+1)/2)\n\
  *          On entry, the upper or lower triangle of the symmetric matrix\n\
  *          A, packed columnwise in a linear array.  The j-th column of A\n\
  *          is stored in the array AP as follows:\n\
  *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n\
  *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.\n\
  *\n\
  *          On exit, if INFO = 0, the transformed matrix, stored in the\n\
  *          same format as A.\n\
  *\n\
  *  BP      (input) REAL array, dimension (N*(N+1)/2)\n\
  *          The triangular factor from the Cholesky factorization of B,\n\
  *          stored in the same format as A, as returned by SPPTRF.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"