File: ssteqr

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (103 lines) | stat: -rwxr-xr-x 3,683 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
--- 
:name: ssteqr
:md5sum: 75323c7177adfd9bb0df92567a13acaf
:category: :subroutine
:arguments: 
- compz: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- d: 
    :type: real
    :intent: input/output
    :dims: 
    - n
- e: 
    :type: real
    :intent: input/output
    :dims: 
    - n-1
- z: 
    :type: real
    :intent: input/output
    :dims: 
    - ldz
    - n
- ldz: 
    :type: integer
    :intent: input
- work: 
    :type: real
    :intent: workspace
    :dims: 
    - "lsame_(&compz,\"N\") ? 0 : MAX(1,2*n-2)"
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE SSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  SSTEQR computes all eigenvalues and, optionally, eigenvectors of a\n\
  *  symmetric tridiagonal matrix using the implicit QL or QR method.\n\
  *  The eigenvectors of a full or band symmetric matrix can also be found\n\
  *  if SSYTRD or SSPTRD or SSBTRD has been used to reduce this matrix to\n\
  *  tridiagonal form.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  COMPZ   (input) CHARACTER*1\n\
  *          = 'N':  Compute eigenvalues only.\n\
  *          = 'V':  Compute eigenvalues and eigenvectors of the original\n\
  *                  symmetric matrix.  On entry, Z must contain the\n\
  *                  orthogonal matrix used to reduce the original matrix\n\
  *                  to tridiagonal form.\n\
  *          = 'I':  Compute eigenvalues and eigenvectors of the\n\
  *                  tridiagonal matrix.  Z is initialized to the identity\n\
  *                  matrix.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix.  N >= 0.\n\
  *\n\
  *  D       (input/output) REAL array, dimension (N)\n\
  *          On entry, the diagonal elements of the tridiagonal matrix.\n\
  *          On exit, if INFO = 0, the eigenvalues in ascending order.\n\
  *\n\
  *  E       (input/output) REAL array, dimension (N-1)\n\
  *          On entry, the (n-1) subdiagonal elements of the tridiagonal\n\
  *          matrix.\n\
  *          On exit, E has been destroyed.\n\
  *\n\
  *  Z       (input/output) REAL array, dimension (LDZ, N)\n\
  *          On entry, if  COMPZ = 'V', then Z contains the orthogonal\n\
  *          matrix used in the reduction to tridiagonal form.\n\
  *          On exit, if INFO = 0, then if  COMPZ = 'V', Z contains the\n\
  *          orthonormal eigenvectors of the original symmetric matrix,\n\
  *          and if COMPZ = 'I', Z contains the orthonormal eigenvectors\n\
  *          of the symmetric tridiagonal matrix.\n\
  *          If COMPZ = 'N', then Z is not referenced.\n\
  *\n\
  *  LDZ     (input) INTEGER\n\
  *          The leading dimension of the array Z.  LDZ >= 1, and if\n\
  *          eigenvectors are desired, then  LDZ >= max(1,N).\n\
  *\n\
  *  WORK    (workspace) REAL array, dimension (max(1,2*N-2))\n\
  *          If COMPZ = 'N', then WORK is not referenced.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *          > 0:  the algorithm has failed to find all the eigenvalues in\n\
  *                a total of 30*N iterations; if INFO = i, then i\n\
  *                elements of E have not converged to zero; on exit, D\n\
  *                and E contain the elements of a symmetric tridiagonal\n\
  *                matrix which is orthogonally similar to the original\n\
  *                matrix.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"