File: ssyevd

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (157 lines) | stat: -rwxr-xr-x 6,001 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
--- 
:name: ssyevd
:md5sum: e10c9634d1a916940bd4f1bd51d00aed
:category: :subroutine
:arguments: 
- jobz: 
    :type: char
    :intent: input
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: real
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- w: 
    :type: real
    :intent: output
    :dims: 
    - n
- work: 
    :type: real
    :intent: output
    :dims: 
    - MAX(1,lwork)
- lwork: 
    :type: integer
    :intent: input
    :option: true
    :default: "n<=1 ? 1 : lsame_(&jobz,\"N\") ? 2*n+1 : lsame_(&jobz,\"V\") ? 1+6*n+2*n*n : 0"
- iwork: 
    :type: integer
    :intent: output
    :dims: 
    - MAX(1,liwork)
- liwork: 
    :type: integer
    :intent: input
    :option: true
    :default: "n<=1 ? 1 : lsame_(&jobz,\"N\") ? 1 : lsame_(&jobz,\"V\") ? 3+5*n : 0"
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE SSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK, LIWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  SSYEVD computes all eigenvalues and, optionally, eigenvectors of a\n\
  *  real symmetric matrix A. If eigenvectors are desired, it uses a\n\
  *  divide and conquer algorithm.\n\
  *\n\
  *  The divide and conquer algorithm makes very mild assumptions about\n\
  *  floating point arithmetic. It will work on machines with a guard\n\
  *  digit in add/subtract, or on those binary machines without guard\n\
  *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or\n\
  *  Cray-2. It could conceivably fail on hexadecimal or decimal machines\n\
  *  without guard digits, but we know of none.\n\
  *\n\
  *  Because of large use of BLAS of level 3, SSYEVD needs N**2 more\n\
  *  workspace than SSYEVX.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  JOBZ    (input) CHARACTER*1\n\
  *          = 'N':  Compute eigenvalues only;\n\
  *          = 'V':  Compute eigenvalues and eigenvectors.\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          = 'U':  Upper triangle of A is stored;\n\
  *          = 'L':  Lower triangle of A is stored.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.\n\
  *\n\
  *  A       (input/output) REAL array, dimension (LDA, N)\n\
  *          On entry, the symmetric matrix A.  If UPLO = 'U', the\n\
  *          leading N-by-N upper triangular part of A contains the\n\
  *          upper triangular part of the matrix A.  If UPLO = 'L',\n\
  *          the leading N-by-N lower triangular part of A contains\n\
  *          the lower triangular part of the matrix A.\n\
  *          On exit, if JOBZ = 'V', then if INFO = 0, A contains the\n\
  *          orthonormal eigenvectors of the matrix A.\n\
  *          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')\n\
  *          or the upper triangle (if UPLO='U') of A, including the\n\
  *          diagonal, is destroyed.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,N).\n\
  *\n\
  *  W       (output) REAL array, dimension (N)\n\
  *          If INFO = 0, the eigenvalues in ascending order.\n\
  *\n\
  *  WORK    (workspace/output) REAL array,\n\
  *                                         dimension (LWORK)\n\
  *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
  *\n\
  *  LWORK   (input) INTEGER\n\
  *          The dimension of the array WORK.\n\
  *          If N <= 1,               LWORK must be at least 1.\n\
  *          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.\n\
  *          If JOBZ = 'V' and N > 1, LWORK must be at least \n\
  *                                                1 + 6*N + 2*N**2.\n\
  *\n\
  *          If LWORK = -1, then a workspace query is assumed; the routine\n\
  *          only calculates the optimal sizes of the WORK and IWORK\n\
  *          arrays, returns these values as the first entries of the WORK\n\
  *          and IWORK arrays, and no error message related to LWORK or\n\
  *          LIWORK is issued by XERBLA.\n\
  *\n\
  *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))\n\
  *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.\n\
  *\n\
  *  LIWORK  (input) INTEGER\n\
  *          The dimension of the array IWORK.\n\
  *          If N <= 1,                LIWORK must be at least 1.\n\
  *          If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.\n\
  *          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.\n\
  *\n\
  *          If LIWORK = -1, then a workspace query is assumed; the\n\
  *          routine only calculates the optimal sizes of the WORK and\n\
  *          IWORK arrays, returns these values as the first entries of\n\
  *          the WORK and IWORK arrays, and no error message related to\n\
  *          LWORK or LIWORK is issued by XERBLA.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *          > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed\n\
  *                to converge; i off-diagonal elements of an intermediate\n\
  *                tridiagonal form did not converge to zero;\n\
  *                if INFO = i and JOBZ = 'V', then the algorithm failed\n\
  *                to compute an eigenvalue while working on the submatrix\n\
  *                lying in rows and columns INFO/(N+1) through\n\
  *                mod(INFO,N+1).\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  Based on contributions by\n\
  *     Jeff Rutter, Computer Science Division, University of California\n\
  *     at Berkeley, USA\n\
  *  Modified by Francoise Tisseur, University of Tennessee.\n\
  *\n\
  *  Modified description of INFO. Sven, 16 Feb 05.\n\
  *  =====================================================================\n\
  *\n"