1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
---
:name: stfsm
:md5sum: 1dcdb7177f893a4f654c7e71cf9bfb56
:category: :subroutine
:arguments:
- transr:
:type: char
:intent: input
- side:
:type: char
:intent: input
- uplo:
:type: char
:intent: input
- trans:
:type: char
:intent: input
- diag:
:type: char
:intent: input
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- alpha:
:type: real
:intent: input
- a:
:type: real
:intent: input
:dims:
- nt
- b:
:type: real
:intent: input/output
:dims:
- ldb
- n
- ldb:
:type: integer
:intent: input
:substitutions:
ldb: MAX(1,m)
:fortran_help: " SUBROUTINE STFSM( TRANSR, SIDE, UPLO, TRANS, DIAG, M, N, ALPHA, A, B, LDB )\n\n\
* Purpose\n\
* =======\n\
*\n\
* Level 3 BLAS like routine for A in RFP Format.\n\
*\n\
* STFSM solves the matrix equation\n\
*\n\
* op( A )*X = alpha*B or X*op( A ) = alpha*B\n\
*\n\
* where alpha is a scalar, X and B are m by n matrices, A is a unit, or\n\
* non-unit, upper or lower triangular matrix and op( A ) is one of\n\
*\n\
* op( A ) = A or op( A ) = A'.\n\
*\n\
* A is in Rectangular Full Packed (RFP) Format.\n\
*\n\
* The matrix X is overwritten on B.\n\
*\n\n\
* Arguments\n\
* ==========\n\
*\n\
* TRANSR (input) CHARACTER*1\n\
* = 'N': The Normal Form of RFP A is stored;\n\
* = 'T': The Transpose Form of RFP A is stored.\n\
*\n\
* SIDE (input) CHARACTER*1\n\
* On entry, SIDE specifies whether op( A ) appears on the left\n\
* or right of X as follows:\n\
*\n\
* SIDE = 'L' or 'l' op( A )*X = alpha*B.\n\
*\n\
* SIDE = 'R' or 'r' X*op( A ) = alpha*B.\n\
*\n\
* Unchanged on exit.\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* On entry, UPLO specifies whether the RFP matrix A came from\n\
* an upper or lower triangular matrix as follows:\n\
* UPLO = 'U' or 'u' RFP A came from an upper triangular matrix\n\
* UPLO = 'L' or 'l' RFP A came from a lower triangular matrix\n\
*\n\
* Unchanged on exit.\n\
*\n\
* TRANS (input) CHARACTER*1\n\
* On entry, TRANS specifies the form of op( A ) to be used\n\
* in the matrix multiplication as follows:\n\
*\n\
* TRANS = 'N' or 'n' op( A ) = A.\n\
*\n\
* TRANS = 'T' or 't' op( A ) = A'.\n\
*\n\
* Unchanged on exit.\n\
*\n\
* DIAG (input) CHARACTER*1\n\
* On entry, DIAG specifies whether or not RFP A is unit\n\
* triangular as follows:\n\
*\n\
* DIAG = 'U' or 'u' A is assumed to be unit triangular.\n\
*\n\
* DIAG = 'N' or 'n' A is not assumed to be unit\n\
* triangular.\n\
*\n\
* Unchanged on exit.\n\
*\n\
* M (input) INTEGER\n\
* On entry, M specifies the number of rows of B. M must be at\n\
* least zero.\n\
* Unchanged on exit.\n\
*\n\
* N (input) INTEGER\n\
* On entry, N specifies the number of columns of B. N must be\n\
* at least zero.\n\
* Unchanged on exit.\n\
*\n\
* ALPHA (input) REAL\n\
* On entry, ALPHA specifies the scalar alpha. When alpha is\n\
* zero then A is not referenced and B need not be set before\n\
* entry.\n\
* Unchanged on exit.\n\
*\n\
* A (input) REAL array, dimension (NT)\n\
* NT = N*(N+1)/2. On entry, the matrix A in RFP Format.\n\
* RFP Format is described by TRANSR, UPLO and N as follows:\n\
* If TRANSR='N' then RFP A is (0:N,0:K-1) when N is even;\n\
* K=N/2. RFP A is (0:N-1,0:K) when N is odd; K=N/2. If\n\
* TRANSR = 'T' then RFP is the transpose of RFP A as\n\
* defined when TRANSR = 'N'. The contents of RFP A are defined\n\
* by UPLO as follows: If UPLO = 'U' the RFP A contains the NT\n\
* elements of upper packed A either in normal or\n\
* transpose Format. If UPLO = 'L' the RFP A contains\n\
* the NT elements of lower packed A either in normal or\n\
* transpose Format. The LDA of RFP A is (N+1)/2 when\n\
* TRANSR = 'T'. When TRANSR is 'N' the LDA is N+1 when N is\n\
* even and is N when is odd.\n\
* See the Note below for more details. Unchanged on exit.\n\
*\n\
* B (input/output) REAL array, DIMENSION (LDB,N)\n\
* Before entry, the leading m by n part of the array B must\n\
* contain the right-hand side matrix B, and on exit is\n\
* overwritten by the solution matrix X.\n\
*\n\
* LDB (input) INTEGER\n\
* On entry, LDB specifies the first dimension of B as declared\n\
* in the calling (sub) program. LDB must be at least\n\
* max( 1, m ).\n\
* Unchanged on exit.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* We first consider Rectangular Full Packed (RFP) Format when N is\n\
* even. We give an example where N = 6.\n\
*\n\
* AP is Upper AP is Lower\n\
*\n\
* 00 01 02 03 04 05 00\n\
* 11 12 13 14 15 10 11\n\
* 22 23 24 25 20 21 22\n\
* 33 34 35 30 31 32 33\n\
* 44 45 40 41 42 43 44\n\
* 55 50 51 52 53 54 55\n\
*\n\
*\n\
* Let TRANSR = 'N'. RFP holds AP as follows:\n\
* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last\n\
* three columns of AP upper. The lower triangle A(4:6,0:2) consists of\n\
* the transpose of the first three columns of AP upper.\n\
* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first\n\
* three columns of AP lower. The upper triangle A(0:2,0:2) consists of\n\
* the transpose of the last three columns of AP lower.\n\
* This covers the case N even and TRANSR = 'N'.\n\
*\n\
* RFP A RFP A\n\
*\n\
* 03 04 05 33 43 53\n\
* 13 14 15 00 44 54\n\
* 23 24 25 10 11 55\n\
* 33 34 35 20 21 22\n\
* 00 44 45 30 31 32\n\
* 01 11 55 40 41 42\n\
* 02 12 22 50 51 52\n\
*\n\
* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the\n\
* transpose of RFP A above. One therefore gets:\n\
*\n\
*\n\
* RFP A RFP A\n\
*\n\
* 03 13 23 33 00 01 02 33 00 10 20 30 40 50\n\
* 04 14 24 34 44 11 12 43 44 11 21 31 41 51\n\
* 05 15 25 35 45 55 22 53 54 55 22 32 42 52\n\
*\n\
*\n\
* We then consider Rectangular Full Packed (RFP) Format when N is\n\
* odd. We give an example where N = 5.\n\
*\n\
* AP is Upper AP is Lower\n\
*\n\
* 00 01 02 03 04 00\n\
* 11 12 13 14 10 11\n\
* 22 23 24 20 21 22\n\
* 33 34 30 31 32 33\n\
* 44 40 41 42 43 44\n\
*\n\
*\n\
* Let TRANSR = 'N'. RFP holds AP as follows:\n\
* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last\n\
* three columns of AP upper. The lower triangle A(3:4,0:1) consists of\n\
* the transpose of the first two columns of AP upper.\n\
* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first\n\
* three columns of AP lower. The upper triangle A(0:1,1:2) consists of\n\
* the transpose of the last two columns of AP lower.\n\
* This covers the case N odd and TRANSR = 'N'.\n\
*\n\
* RFP A RFP A\n\
*\n\
* 02 03 04 00 33 43\n\
* 12 13 14 10 11 44\n\
* 22 23 24 20 21 22\n\
* 00 33 34 30 31 32\n\
* 01 11 44 40 41 42\n\
*\n\
* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the\n\
* transpose of RFP A above. One therefore gets:\n\
*\n\
* RFP A RFP A\n\
*\n\
* 02 12 22 00 01 00 10 20 30 40 50\n\
* 03 13 23 33 11 33 11 21 31 41 51\n\
* 04 14 24 34 44 43 44 22 32 42 52\n\
*\n\
* Reference\n\
* =========\n\
*\n\
* =====================================================================\n\
*\n\
* ..\n"
|