File: zgbsv

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (134 lines) | stat: -rwxr-xr-x 4,931 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
--- 
:name: zgbsv
:md5sum: ae5d9df6f8b2826acd8be07569b5c355
:category: :subroutine
:arguments: 
- n: 
    :type: integer
    :intent: input
- kl: 
    :type: integer
    :intent: input
- ku: 
    :type: integer
    :intent: input
- nrhs: 
    :type: integer
    :intent: input
- ab: 
    :type: doublecomplex
    :intent: input/output
    :dims: 
    - ldab
    - n
- ldab: 
    :type: integer
    :intent: input
- ipiv: 
    :type: integer
    :intent: output
    :dims: 
    - n
- b: 
    :type: doublecomplex
    :intent: input/output
    :dims: 
    - ldb
    - nrhs
- ldb: 
    :type: integer
    :intent: input
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE ZGBSV( N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  ZGBSV computes the solution to a complex system of linear equations\n\
  *  A * X = B, where A is a band matrix of order N with KL subdiagonals\n\
  *  and KU superdiagonals, and X and B are N-by-NRHS matrices.\n\
  *\n\
  *  The LU decomposition with partial pivoting and row interchanges is\n\
  *  used to factor A as A = L * U, where L is a product of permutation\n\
  *  and unit lower triangular matrices with KL subdiagonals, and U is\n\
  *  upper triangular with KL+KU superdiagonals.  The factored form of A\n\
  *  is then used to solve the system of equations A * X = B.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of linear equations, i.e., the order of the\n\
  *          matrix A.  N >= 0.\n\
  *\n\
  *  KL      (input) INTEGER\n\
  *          The number of subdiagonals within the band of A.  KL >= 0.\n\
  *\n\
  *  KU      (input) INTEGER\n\
  *          The number of superdiagonals within the band of A.  KU >= 0.\n\
  *\n\
  *  NRHS    (input) INTEGER\n\
  *          The number of right hand sides, i.e., the number of columns\n\
  *          of the matrix B.  NRHS >= 0.\n\
  *\n\
  *  AB      (input/output) COMPLEX*16 array, dimension (LDAB,N)\n\
  *          On entry, the matrix A in band storage, in rows KL+1 to\n\
  *          2*KL+KU+1; rows 1 to KL of the array need not be set.\n\
  *          The j-th column of A is stored in the j-th column of the\n\
  *          array AB as follows:\n\
  *          AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL)\n\
  *          On exit, details of the factorization: U is stored as an\n\
  *          upper triangular band matrix with KL+KU superdiagonals in\n\
  *          rows 1 to KL+KU+1, and the multipliers used during the\n\
  *          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.\n\
  *          See below for further details.\n\
  *\n\
  *  LDAB    (input) INTEGER\n\
  *          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.\n\
  *\n\
  *  IPIV    (output) INTEGER array, dimension (N)\n\
  *          The pivot indices that define the permutation matrix P;\n\
  *          row i of the matrix was interchanged with row IPIV(i).\n\
  *\n\
  *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)\n\
  *          On entry, the N-by-NRHS right hand side matrix B.\n\
  *          On exit, if INFO = 0, the N-by-NRHS solution matrix X.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          The leading dimension of the array B.  LDB >= max(1,N).\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *          > 0:  if INFO = i, U(i,i) is exactly zero.  The factorization\n\
  *                has been completed, but the factor U is exactly\n\
  *                singular, and the solution has not been computed.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  The band storage scheme is illustrated by the following example, when\n\
  *  M = N = 6, KL = 2, KU = 1:\n\
  *\n\
  *  On entry:                       On exit:\n\
  *\n\
  *      *    *    *    +    +    +       *    *    *   u14  u25  u36\n\
  *      *    *    +    +    +    +       *    *   u13  u24  u35  u46\n\
  *      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56\n\
  *     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66\n\
  *     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *\n\
  *     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *\n\
  *\n\
  *  Array elements marked * are not used by the routine; elements marked\n\
  *  + need not be set on entry, but are required by the routine to store\n\
  *  elements of U because of fill-in resulting from the row interchanges.\n\
  *\n\
  *  =====================================================================\n\
  *\n\
  *     .. External Subroutines ..\n      EXTERNAL           XERBLA, ZGBTRF, ZGBTRS\n\
  *     ..\n\
  *     .. Intrinsic Functions ..\n      INTRINSIC          MAX\n\
  *     ..\n"