1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
|
---
:name: zgesc2
:md5sum: 7c06097df40e16822688433d8198c64a
:category: :subroutine
:arguments:
- n:
:type: integer
:intent: input
- a:
:type: doublecomplex
:intent: input
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- rhs:
:type: doublecomplex
:intent: input/output
:dims:
- n
- ipiv:
:type: integer
:intent: input
:dims:
- n
- jpiv:
:type: integer
:intent: input
:dims:
- n
- scale:
:type: doublereal
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE ZGESC2( N, A, LDA, RHS, IPIV, JPIV, SCALE )\n\n\
* Purpose\n\
* =======\n\
*\n\
* ZGESC2 solves a system of linear equations\n\
*\n\
* A * X = scale* RHS\n\
*\n\
* with a general N-by-N matrix A using the LU factorization with\n\
* complete pivoting computed by ZGETC2.\n\
*\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* N (input) INTEGER\n\
* The number of columns of the matrix A.\n\
*\n\
* A (input) COMPLEX*16 array, dimension (LDA, N)\n\
* On entry, the LU part of the factorization of the n-by-n\n\
* matrix A computed by ZGETC2: A = P * L * U * Q\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1, N).\n\
*\n\
* RHS (input/output) COMPLEX*16 array, dimension N.\n\
* On entry, the right hand side vector b.\n\
* On exit, the solution vector X.\n\
*\n\
* IPIV (input) INTEGER array, dimension (N).\n\
* The pivot indices; for 1 <= i <= N, row i of the\n\
* matrix has been interchanged with row IPIV(i).\n\
*\n\
* JPIV (input) INTEGER array, dimension (N).\n\
* The pivot indices; for 1 <= j <= N, column j of the\n\
* matrix has been interchanged with column JPIV(j).\n\
*\n\
* SCALE (output) DOUBLE PRECISION\n\
* On exit, SCALE contains the scale factor. SCALE is chosen\n\
* 0 <= SCALE <= 1 to prevent owerflow in the solution.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* Based on contributions by\n\
* Bo Kagstrom and Peter Poromaa, Department of Computing Science,\n\
* Umea University, S-901 87 Umea, Sweden.\n\
*\n\
* =====================================================================\n\
*\n"
|