File: zgesv

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (97 lines) | stat: -rwxr-xr-x 3,137 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
--- 
:name: zgesv
:md5sum: b7f9978f4df659aa04f0e9358fe50f53
:category: :subroutine
:arguments: 
- n: 
    :type: integer
    :intent: input
- nrhs: 
    :type: integer
    :intent: input
- a: 
    :type: doublecomplex
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- ipiv: 
    :type: integer
    :intent: output
    :dims: 
    - n
- b: 
    :type: doublecomplex
    :intent: input/output
    :dims: 
    - ldb
    - nrhs
- ldb: 
    :type: integer
    :intent: input
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE ZGESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  ZGESV computes the solution to a complex system of linear equations\n\
  *     A * X = B,\n\
  *  where A is an N-by-N matrix and X and B are N-by-NRHS matrices.\n\
  *\n\
  *  The LU decomposition with partial pivoting and row interchanges is\n\
  *  used to factor A as\n\
  *     A = P * L * U,\n\
  *  where P is a permutation matrix, L is unit lower triangular, and U is\n\
  *  upper triangular.  The factored form of A is then used to solve the\n\
  *  system of equations A * X = B.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of linear equations, i.e., the order of the\n\
  *          matrix A.  N >= 0.\n\
  *\n\
  *  NRHS    (input) INTEGER\n\
  *          The number of right hand sides, i.e., the number of columns\n\
  *          of the matrix B.  NRHS >= 0.\n\
  *\n\
  *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)\n\
  *          On entry, the N-by-N coefficient matrix A.\n\
  *          On exit, the factors L and U from the factorization\n\
  *          A = P*L*U; the unit diagonal elements of L are not stored.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,N).\n\
  *\n\
  *  IPIV    (output) INTEGER array, dimension (N)\n\
  *          The pivot indices that define the permutation matrix P;\n\
  *          row i of the matrix was interchanged with row IPIV(i).\n\
  *\n\
  *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)\n\
  *          On entry, the N-by-NRHS matrix of right hand side matrix B.\n\
  *          On exit, if INFO = 0, the N-by-NRHS solution matrix X.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          The leading dimension of the array B.  LDB >= max(1,N).\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *          > 0:  if INFO = i, U(i,i) is exactly zero.  The factorization\n\
  *                has been completed, but the factor U is exactly\n\
  *                singular, so the solution could not be computed.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n\
  *     .. External Subroutines ..\n      EXTERNAL           XERBLA, ZGETRF, ZGETRS\n\
  *     ..\n\
  *     .. Intrinsic Functions ..\n      INTRINSIC          MAX\n\
  *     ..\n"