File: zgetc2

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (82 lines) | stat: -rwxr-xr-x 2,594 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
--- 
:name: zgetc2
:md5sum: 017780c8b3ef2a235613004b824db1dc
:category: :subroutine
:arguments: 
- n: 
    :type: integer
    :intent: input
- a: 
    :type: doublecomplex
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- ipiv: 
    :type: integer
    :intent: output
    :dims: 
    - n
- jpiv: 
    :type: integer
    :intent: output
    :dims: 
    - n
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE ZGETC2( N, A, LDA, IPIV, JPIV, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  ZGETC2 computes an LU factorization, using complete pivoting, of the\n\
  *  n-by-n matrix A. The factorization has the form A = P * L * U * Q,\n\
  *  where P and Q are permutation matrices, L is lower triangular with\n\
  *  unit diagonal elements and U is upper triangular.\n\
  *\n\
  *  This is a level 1 BLAS version of the algorithm.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A. N >= 0.\n\
  *\n\
  *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)\n\
  *          On entry, the n-by-n matrix to be factored.\n\
  *          On exit, the factors L and U from the factorization\n\
  *          A = P*L*U*Q; the unit diagonal elements of L are not stored.\n\
  *          If U(k, k) appears to be less than SMIN, U(k, k) is given the\n\
  *          value of SMIN, giving a nonsingular perturbed system.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1, N).\n\
  *\n\
  *  IPIV    (output) INTEGER array, dimension (N).\n\
  *          The pivot indices; for 1 <= i <= N, row i of the\n\
  *          matrix has been interchanged with row IPIV(i).\n\
  *\n\
  *  JPIV    (output) INTEGER array, dimension (N).\n\
  *          The pivot indices; for 1 <= j <= N, column j of the\n\
  *          matrix has been interchanged with column JPIV(j).\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *           = 0: successful exit\n\
  *           > 0: if INFO = k, U(k, k) is likely to produce overflow if\n\
  *                one tries to solve for x in Ax = b. So U is perturbed\n\
  *                to avoid the overflow.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  Based on contributions by\n\
  *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,\n\
  *     Umea University, S-901 87 Umea, Sweden.\n\
  *\n\
  *  =====================================================================\n\
  *\n"