File: zgtcon

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (112 lines) | stat: -rwxr-xr-x 3,399 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
--- 
:name: zgtcon
:md5sum: 27adfc903351ec100318405f24932950
:category: :subroutine
:arguments: 
- norm: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- dl: 
    :type: doublecomplex
    :intent: input
    :dims: 
    - n-1
- d: 
    :type: doublecomplex
    :intent: input
    :dims: 
    - n
- du: 
    :type: doublecomplex
    :intent: input
    :dims: 
    - n-1
- du2: 
    :type: doublecomplex
    :intent: input
    :dims: 
    - n-2
- ipiv: 
    :type: integer
    :intent: input
    :dims: 
    - n
- anorm: 
    :type: doublereal
    :intent: input
- rcond: 
    :type: doublereal
    :intent: output
- work: 
    :type: doublecomplex
    :intent: workspace
    :dims: 
    - 2*n
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE ZGTCON( NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND, WORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  ZGTCON estimates the reciprocal of the condition number of a complex\n\
  *  tridiagonal matrix A using the LU factorization as computed by\n\
  *  ZGTTRF.\n\
  *\n\
  *  An estimate is obtained for norm(inv(A)), and the reciprocal of the\n\
  *  condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  NORM    (input) CHARACTER*1\n\
  *          Specifies whether the 1-norm condition number or the\n\
  *          infinity-norm condition number is required:\n\
  *          = '1' or 'O':  1-norm;\n\
  *          = 'I':         Infinity-norm.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.\n\
  *\n\
  *  DL      (input) COMPLEX*16 array, dimension (N-1)\n\
  *          The (n-1) multipliers that define the matrix L from the\n\
  *          LU factorization of A as computed by ZGTTRF.\n\
  *\n\
  *  D       (input) COMPLEX*16 array, dimension (N)\n\
  *          The n diagonal elements of the upper triangular matrix U from\n\
  *          the LU factorization of A.\n\
  *\n\
  *  DU      (input) COMPLEX*16 array, dimension (N-1)\n\
  *          The (n-1) elements of the first superdiagonal of U.\n\
  *\n\
  *  DU2     (input) COMPLEX*16 array, dimension (N-2)\n\
  *          The (n-2) elements of the second superdiagonal of U.\n\
  *\n\
  *  IPIV    (input) INTEGER array, dimension (N)\n\
  *          The pivot indices; for 1 <= i <= n, row i of the matrix was\n\
  *          interchanged with row IPIV(i).  IPIV(i) will always be either\n\
  *          i or i+1; IPIV(i) = i indicates a row interchange was not\n\
  *          required.\n\
  *\n\
  *  ANORM   (input) DOUBLE PRECISION\n\
  *          If NORM = '1' or 'O', the 1-norm of the original matrix A.\n\
  *          If NORM = 'I', the infinity-norm of the original matrix A.\n\
  *\n\
  *  RCOND   (output) DOUBLE PRECISION\n\
  *          The reciprocal of the condition number of the matrix A,\n\
  *          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an\n\
  *          estimate of the 1-norm of inv(A) computed in this routine.\n\
  *\n\
  *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"