1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
---
:name: zhbgv
:md5sum: 53ed0c8a2fa947bd3a711b8a8c2025f0
:category: :subroutine
:arguments:
- jobz:
:type: char
:intent: input
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- ka:
:type: integer
:intent: input
- kb:
:type: integer
:intent: input
- ab:
:type: doublecomplex
:intent: input/output
:dims:
- ldab
- n
- ldab:
:type: integer
:intent: input
- bb:
:type: doublecomplex
:intent: input/output
:dims:
- ldbb
- n
- ldbb:
:type: integer
:intent: input
- w:
:type: doublereal
:intent: output
:dims:
- n
- z:
:type: doublecomplex
:intent: output
:dims:
- ldz
- n
- ldz:
:type: integer
:intent: input
- work:
:type: doublecomplex
:intent: workspace
:dims:
- n
- rwork:
:type: doublereal
:intent: workspace
:dims:
- 3*n
- info:
:type: integer
:intent: output
:substitutions:
ldz: "lsame_(&jobz,\"V\") ? n : 1"
:fortran_help: " SUBROUTINE ZHBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z, LDZ, WORK, RWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* ZHBGV computes all the eigenvalues, and optionally, the eigenvectors\n\
* of a complex generalized Hermitian-definite banded eigenproblem, of\n\
* the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian\n\
* and banded, and B is also positive definite.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* JOBZ (input) CHARACTER*1\n\
* = 'N': Compute eigenvalues only;\n\
* = 'V': Compute eigenvalues and eigenvectors.\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': Upper triangles of A and B are stored;\n\
* = 'L': Lower triangles of A and B are stored.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrices A and B. N >= 0.\n\
*\n\
* KA (input) INTEGER\n\
* The number of superdiagonals of the matrix A if UPLO = 'U',\n\
* or the number of subdiagonals if UPLO = 'L'. KA >= 0.\n\
*\n\
* KB (input) INTEGER\n\
* The number of superdiagonals of the matrix B if UPLO = 'U',\n\
* or the number of subdiagonals if UPLO = 'L'. KB >= 0.\n\
*\n\
* AB (input/output) COMPLEX*16 array, dimension (LDAB, N)\n\
* On entry, the upper or lower triangle of the Hermitian band\n\
* matrix A, stored in the first ka+1 rows of the array. The\n\
* j-th column of A is stored in the j-th column of the array AB\n\
* as follows:\n\
* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;\n\
* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).\n\
*\n\
* On exit, the contents of AB are destroyed.\n\
*\n\
* LDAB (input) INTEGER\n\
* The leading dimension of the array AB. LDAB >= KA+1.\n\
*\n\
* BB (input/output) COMPLEX*16 array, dimension (LDBB, N)\n\
* On entry, the upper or lower triangle of the Hermitian band\n\
* matrix B, stored in the first kb+1 rows of the array. The\n\
* j-th column of B is stored in the j-th column of the array BB\n\
* as follows:\n\
* if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;\n\
* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).\n\
*\n\
* On exit, the factor S from the split Cholesky factorization\n\
* B = S**H*S, as returned by ZPBSTF.\n\
*\n\
* LDBB (input) INTEGER\n\
* The leading dimension of the array BB. LDBB >= KB+1.\n\
*\n\
* W (output) DOUBLE PRECISION array, dimension (N)\n\
* If INFO = 0, the eigenvalues in ascending order.\n\
*\n\
* Z (output) COMPLEX*16 array, dimension (LDZ, N)\n\
* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of\n\
* eigenvectors, with the i-th column of Z holding the\n\
* eigenvector associated with W(i). The eigenvectors are\n\
* normalized so that Z**H*B*Z = I.\n\
* If JOBZ = 'N', then Z is not referenced.\n\
*\n\
* LDZ (input) INTEGER\n\
* The leading dimension of the array Z. LDZ >= 1, and if\n\
* JOBZ = 'V', LDZ >= N.\n\
*\n\
* WORK (workspace) COMPLEX*16 array, dimension (N)\n\
*\n\
* RWORK (workspace) DOUBLE PRECISION array, dimension (3*N)\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
* > 0: if INFO = i, and i is:\n\
* <= N: the algorithm failed to converge:\n\
* i off-diagonal elements of an intermediate\n\
* tridiagonal form did not converge to zero;\n\
* > N: if INFO = N + i, for 1 <= i <= N, then ZPBSTF\n\
* returned INFO = i: B is not positive definite.\n\
* The factorization of B could not be completed and\n\
* no eigenvalues or eigenvectors were computed.\n\
*\n\n\
* =====================================================================\n\
*\n\
* .. Local Scalars ..\n LOGICAL UPPER, WANTZ\n CHARACTER VECT\n INTEGER IINFO, INDE, INDWRK\n\
* ..\n\
* .. External Functions ..\n LOGICAL LSAME\n EXTERNAL LSAME\n\
* ..\n\
* .. External Subroutines ..\n EXTERNAL DSTERF, XERBLA, ZHBGST, ZHBTRD, ZPBSTF, ZSTEQR\n\
* ..\n"
|