1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
---
:name: zheevd
:md5sum: cfb4c97c52c4714d3a44874ba9810d89
:category: :subroutine
:arguments:
- jobz:
:type: char
:intent: input
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: doublecomplex
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- w:
:type: doublereal
:intent: output
:dims:
- n
- work:
:type: doublecomplex
:intent: output
:dims:
- MAX(1,lwork)
- lwork:
:type: integer
:intent: input
:option: true
:default: "n<=1 ? 1 : lsame_(&jobz,\"N\") ? n+1 : lsame_(&jobz,\"V\") ? 2*n+n*n : 0"
- rwork:
:type: doublereal
:intent: output
:dims:
- MAX(1,lrwork)
- lrwork:
:type: integer
:intent: input
:option: true
:default: "n<=1 ? 1 : lsame_(&jobz,\"N\") ? n+1 : lsame_(&jobz,\"V\") ? 1+5*n+2*n*n : 0"
- iwork:
:type: integer
:intent: output
:dims:
- MAX(1,liwork)
- liwork:
:type: integer
:intent: input
:option: true
:default: "n<=1 ? 1 : lsame_(&jobz,\"N\") ? 1 : lsame_(&jobz,\"V\") ? 3+5*n : 0"
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE ZHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* ZHEEVD computes all eigenvalues and, optionally, eigenvectors of a\n\
* complex Hermitian matrix A. If eigenvectors are desired, it uses a\n\
* divide and conquer algorithm.\n\
*\n\
* The divide and conquer algorithm makes very mild assumptions about\n\
* floating point arithmetic. It will work on machines with a guard\n\
* digit in add/subtract, or on those binary machines without guard\n\
* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or\n\
* Cray-2. It could conceivably fail on hexadecimal or decimal machines\n\
* without guard digits, but we know of none.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* JOBZ (input) CHARACTER*1\n\
* = 'N': Compute eigenvalues only;\n\
* = 'V': Compute eigenvalues and eigenvectors.\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': Upper triangle of A is stored;\n\
* = 'L': Lower triangle of A is stored.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* A (input/output) COMPLEX*16 array, dimension (LDA, N)\n\
* On entry, the Hermitian matrix A. If UPLO = 'U', the\n\
* leading N-by-N upper triangular part of A contains the\n\
* upper triangular part of the matrix A. If UPLO = 'L',\n\
* the leading N-by-N lower triangular part of A contains\n\
* the lower triangular part of the matrix A.\n\
* On exit, if JOBZ = 'V', then if INFO = 0, A contains the\n\
* orthonormal eigenvectors of the matrix A.\n\
* If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')\n\
* or the upper triangle (if UPLO='U') of A, including the\n\
* diagonal, is destroyed.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* W (output) DOUBLE PRECISION array, dimension (N)\n\
* If INFO = 0, the eigenvalues in ascending order.\n\
*\n\
* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))\n\
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
*\n\
* LWORK (input) INTEGER\n\
* The length of the array WORK.\n\
* If N <= 1, LWORK must be at least 1.\n\
* If JOBZ = 'N' and N > 1, LWORK must be at least N + 1.\n\
* If JOBZ = 'V' and N > 1, LWORK must be at least 2*N + N**2.\n\
*\n\
* If LWORK = -1, then a workspace query is assumed; the routine\n\
* only calculates the optimal sizes of the WORK, RWORK and\n\
* IWORK arrays, returns these values as the first entries of\n\
* the WORK, RWORK and IWORK arrays, and no error message\n\
* related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n\
*\n\
* RWORK (workspace/output) DOUBLE PRECISION array,\n\
* dimension (LRWORK)\n\
* On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.\n\
*\n\
* LRWORK (input) INTEGER\n\
* The dimension of the array RWORK.\n\
* If N <= 1, LRWORK must be at least 1.\n\
* If JOBZ = 'N' and N > 1, LRWORK must be at least N.\n\
* If JOBZ = 'V' and N > 1, LRWORK must be at least\n\
* 1 + 5*N + 2*N**2.\n\
*\n\
* If LRWORK = -1, then a workspace query is assumed; the\n\
* routine only calculates the optimal sizes of the WORK, RWORK\n\
* and IWORK arrays, returns these values as the first entries\n\
* of the WORK, RWORK and IWORK arrays, and no error message\n\
* related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n\
*\n\
* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))\n\
* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.\n\
*\n\
* LIWORK (input) INTEGER\n\
* The dimension of the array IWORK.\n\
* If N <= 1, LIWORK must be at least 1.\n\
* If JOBZ = 'N' and N > 1, LIWORK must be at least 1.\n\
* If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.\n\
*\n\
* If LIWORK = -1, then a workspace query is assumed; the\n\
* routine only calculates the optimal sizes of the WORK, RWORK\n\
* and IWORK arrays, returns these values as the first entries\n\
* of the WORK, RWORK and IWORK arrays, and no error message\n\
* related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
* > 0: if INFO = i and JOBZ = 'N', then the algorithm failed\n\
* to converge; i off-diagonal elements of an intermediate\n\
* tridiagonal form did not converge to zero;\n\
* if INFO = i and JOBZ = 'V', then the algorithm failed\n\
* to compute an eigenvalue while working on the submatrix\n\
* lying in rows and columns INFO/(N+1) through\n\
* mod(INFO,N+1).\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* Based on contributions by\n\
* Jeff Rutter, Computer Science Division, University of California\n\
* at Berkeley, USA\n\
*\n\
* Modified description of INFO. Sven, 16 Feb 05.\n\
* =====================================================================\n\
*\n"
|