File: zhpsv

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (134 lines) | stat: -rwxr-xr-x 4,978 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
--- 
:name: zhpsv
:md5sum: 0713716e5e44cdc4522b3e60e4cd557d
:category: :subroutine
:arguments: 
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- nrhs: 
    :type: integer
    :intent: input
- ap: 
    :type: doublecomplex
    :intent: input/output
    :dims: 
    - n*(n+1)/2
- ipiv: 
    :type: integer
    :intent: output
    :dims: 
    - n
- b: 
    :type: doublecomplex
    :intent: input/output
    :dims: 
    - ldb
    - nrhs
- ldb: 
    :type: integer
    :intent: input
- info: 
    :type: integer
    :intent: output
:substitutions: 
  n: ldb
:fortran_help: "      SUBROUTINE ZHPSV( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  ZHPSV computes the solution to a complex system of linear equations\n\
  *     A * X = B,\n\
  *  where A is an N-by-N Hermitian matrix stored in packed format and X\n\
  *  and B are N-by-NRHS matrices.\n\
  *\n\
  *  The diagonal pivoting method is used to factor A as\n\
  *     A = U * D * U**H,  if UPLO = 'U', or\n\
  *     A = L * D * L**H,  if UPLO = 'L',\n\
  *  where U (or L) is a product of permutation and unit upper (lower)\n\
  *  triangular matrices, D is Hermitian and block diagonal with 1-by-1\n\
  *  and 2-by-2 diagonal blocks.  The factored form of A is then used to\n\
  *  solve the system of equations A * X = B.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          = 'U':  Upper triangle of A is stored;\n\
  *          = 'L':  Lower triangle of A is stored.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of linear equations, i.e., the order of the\n\
  *          matrix A.  N >= 0.\n\
  *\n\
  *  NRHS    (input) INTEGER\n\
  *          The number of right hand sides, i.e., the number of columns\n\
  *          of the matrix B.  NRHS >= 0.\n\
  *\n\
  *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)\n\
  *          On entry, the upper or lower triangle of the Hermitian matrix\n\
  *          A, packed columnwise in a linear array.  The j-th column of A\n\
  *          is stored in the array AP as follows:\n\
  *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n\
  *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.\n\
  *          See below for further details.\n\
  *\n\
  *          On exit, the block diagonal matrix D and the multipliers used\n\
  *          to obtain the factor U or L from the factorization\n\
  *          A = U*D*U**H or A = L*D*L**H as computed by ZHPTRF, stored as\n\
  *          a packed triangular matrix in the same storage format as A.\n\
  *\n\
  *  IPIV    (output) INTEGER array, dimension (N)\n\
  *          Details of the interchanges and the block structure of D, as\n\
  *          determined by ZHPTRF.  If IPIV(k) > 0, then rows and columns\n\
  *          k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1\n\
  *          diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,\n\
  *          then rows and columns k-1 and -IPIV(k) were interchanged and\n\
  *          D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and\n\
  *          IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and\n\
  *          -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2\n\
  *          diagonal block.\n\
  *\n\
  *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)\n\
  *          On entry, the N-by-NRHS right hand side matrix B.\n\
  *          On exit, if INFO = 0, the N-by-NRHS solution matrix X.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          The leading dimension of the array B.  LDB >= max(1,N).\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization\n\
  *                has been completed, but the block diagonal matrix D is\n\
  *                exactly singular, so the solution could not be\n\
  *                computed.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  The packed storage scheme is illustrated by the following example\n\
  *  when N = 4, UPLO = 'U':\n\
  *\n\
  *  Two-dimensional storage of the Hermitian matrix A:\n\
  *\n\
  *     a11 a12 a13 a14\n\
  *         a22 a23 a24\n\
  *             a33 a34     (aij = conjg(aji))\n\
  *                 a44\n\
  *\n\
  *  Packed storage of the upper triangle of A:\n\
  *\n\
  *  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]\n\
  *\n\
  *  =====================================================================\n\
  *\n\
  *     .. External Functions ..\n      LOGICAL            LSAME\n      EXTERNAL           LSAME\n\
  *     ..\n\
  *     .. External Subroutines ..\n      EXTERNAL           XERBLA, ZHPTRF, ZHPTRS\n\
  *     ..\n\
  *     .. Intrinsic Functions ..\n      INTRINSIC          MAX\n\
  *     ..\n"