1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
---
:name: zlanhf
:md5sum: 70d3555cf9335d87bbaccab9490116b5
:category: :function
:type: doublereal
:arguments:
- norm:
:type: char
:intent: input
- transr:
:type: char
:intent: input
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: doublecomplex
:intent: input
:dims:
- n*(n+1)/2
- work:
:type: doublereal
:intent: workspace
:dims:
- lwork
:substitutions:
lwork: "((lsame_(&norm,\"I\")) || ((('1') || ('o')))) ? n : 0"
:fortran_help: " DOUBLE PRECISION FUNCTION ZLANHF( NORM, TRANSR, UPLO, N, A, WORK )\n\n\
* Purpose\n\
* =======\n\
*\n\
* ZLANHF returns the value of the one norm, or the Frobenius norm, or\n\
* the infinity norm, or the element of largest absolute value of a\n\
* complex Hermitian matrix A in RFP format.\n\
*\n\
* Description\n\
* ===========\n\
*\n\
* ZLANHF returns the value\n\
*\n\
* ZLANHF = ( max(abs(A(i,j))), NORM = 'M' or 'm'\n\
* (\n\
* ( norm1(A), NORM = '1', 'O' or 'o'\n\
* (\n\
* ( normI(A), NORM = 'I' or 'i'\n\
* (\n\
* ( normF(A), NORM = 'F', 'f', 'E' or 'e'\n\
*\n\
* where norm1 denotes the one norm of a matrix (maximum column sum),\n\
* normI denotes the infinity norm of a matrix (maximum row sum) and\n\
* normF denotes the Frobenius norm of a matrix (square root of sum of\n\
* squares). Note that max(abs(A(i,j))) is not a matrix norm.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* NORM (input) CHARACTER\n\
* Specifies the value to be returned in ZLANHF as described\n\
* above.\n\
*\n\
* TRANSR (input) CHARACTER\n\
* Specifies whether the RFP format of A is normal or\n\
* conjugate-transposed format.\n\
* = 'N': RFP format is Normal\n\
* = 'C': RFP format is Conjugate-transposed\n\
*\n\
* UPLO (input) CHARACTER\n\
* On entry, UPLO specifies whether the RFP matrix A came from\n\
* an upper or lower triangular matrix as follows:\n\
*\n\
* UPLO = 'U' or 'u' RFP A came from an upper triangular\n\
* matrix\n\
*\n\
* UPLO = 'L' or 'l' RFP A came from a lower triangular\n\
* matrix\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0. When N = 0, ZLANHF is\n\
* set to zero.\n\
*\n\
* A (input) COMPLEX*16 array, dimension ( N*(N+1)/2 );\n\
* On entry, the matrix A in RFP Format.\n\
* RFP Format is described by TRANSR, UPLO and N as follows:\n\
* If TRANSR='N' then RFP A is (0:N,0:K-1) when N is even;\n\
* K=N/2. RFP A is (0:N-1,0:K) when N is odd; K=N/2. If\n\
* TRANSR = 'C' then RFP is the Conjugate-transpose of RFP A\n\
* as defined when TRANSR = 'N'. The contents of RFP A are\n\
* defined by UPLO as follows: If UPLO = 'U' the RFP A\n\
* contains the ( N*(N+1)/2 ) elements of upper packed A\n\
* either in normal or conjugate-transpose Format. If\n\
* UPLO = 'L' the RFP A contains the ( N*(N+1) /2 ) elements\n\
* of lower packed A either in normal or conjugate-transpose\n\
* Format. The LDA of RFP A is (N+1)/2 when TRANSR = 'C'. When\n\
* TRANSR is 'N' the LDA is N+1 when N is even and is N when\n\
* is odd. See the Note below for more details.\n\
* Unchanged on exit.\n\
*\n\
* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK),\n\
* where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,\n\
* WORK is not referenced.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* We first consider Standard Packed Format when N is even.\n\
* We give an example where N = 6.\n\
*\n\
* AP is Upper AP is Lower\n\
*\n\
* 00 01 02 03 04 05 00\n\
* 11 12 13 14 15 10 11\n\
* 22 23 24 25 20 21 22\n\
* 33 34 35 30 31 32 33\n\
* 44 45 40 41 42 43 44\n\
* 55 50 51 52 53 54 55\n\
*\n\
*\n\
* Let TRANSR = 'N'. RFP holds AP as follows:\n\
* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last\n\
* three columns of AP upper. The lower triangle A(4:6,0:2) consists of\n\
* conjugate-transpose of the first three columns of AP upper.\n\
* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first\n\
* three columns of AP lower. The upper triangle A(0:2,0:2) consists of\n\
* conjugate-transpose of the last three columns of AP lower.\n\
* To denote conjugate we place -- above the element. This covers the\n\
* case N even and TRANSR = 'N'.\n\
*\n\
* RFP A RFP A\n\
*\n\
* -- -- --\n\
* 03 04 05 33 43 53\n\
* -- --\n\
* 13 14 15 00 44 54\n\
* --\n\
* 23 24 25 10 11 55\n\
*\n\
* 33 34 35 20 21 22\n\
* --\n\
* 00 44 45 30 31 32\n\
* -- --\n\
* 01 11 55 40 41 42\n\
* -- -- --\n\
* 02 12 22 50 51 52\n\
*\n\
* Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-\n\
* transpose of RFP A above. One therefore gets:\n\
*\n\
*\n\
* RFP A RFP A\n\
*\n\
* -- -- -- -- -- -- -- -- -- --\n\
* 03 13 23 33 00 01 02 33 00 10 20 30 40 50\n\
* -- -- -- -- -- -- -- -- -- --\n\
* 04 14 24 34 44 11 12 43 44 11 21 31 41 51\n\
* -- -- -- -- -- -- -- -- -- --\n\
* 05 15 25 35 45 55 22 53 54 55 22 32 42 52\n\
*\n\
*\n\
* We next consider Standard Packed Format when N is odd.\n\
* We give an example where N = 5.\n\
*\n\
* AP is Upper AP is Lower\n\
*\n\
* 00 01 02 03 04 00\n\
* 11 12 13 14 10 11\n\
* 22 23 24 20 21 22\n\
* 33 34 30 31 32 33\n\
* 44 40 41 42 43 44\n\
*\n\
*\n\
* Let TRANSR = 'N'. RFP holds AP as follows:\n\
* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last\n\
* three columns of AP upper. The lower triangle A(3:4,0:1) consists of\n\
* conjugate-transpose of the first two columns of AP upper.\n\
* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first\n\
* three columns of AP lower. The upper triangle A(0:1,1:2) consists of\n\
* conjugate-transpose of the last two columns of AP lower.\n\
* To denote conjugate we place -- above the element. This covers the\n\
* case N odd and TRANSR = 'N'.\n\
*\n\
* RFP A RFP A\n\
*\n\
* -- --\n\
* 02 03 04 00 33 43\n\
* --\n\
* 12 13 14 10 11 44\n\
*\n\
* 22 23 24 20 21 22\n\
* --\n\
* 00 33 34 30 31 32\n\
* -- --\n\
* 01 11 44 40 41 42\n\
*\n\
* Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-\n\
* transpose of RFP A above. One therefore gets:\n\
*\n\
*\n\
* RFP A RFP A\n\
*\n\
* -- -- -- -- -- -- -- -- --\n\
* 02 12 22 00 01 00 10 20 30 40 50\n\
* -- -- -- -- -- -- -- -- --\n\
* 03 13 23 33 11 33 11 21 31 41 51\n\
* -- -- -- -- -- -- -- -- --\n\
* 04 14 24 34 44 43 44 22 32 42 52\n\
*\n\
* =====================================================================\n\
*\n"
|