File: zlanhf

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (211 lines) | stat: -rwxr-xr-x 8,253 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
--- 
:name: zlanhf
:md5sum: 70d3555cf9335d87bbaccab9490116b5
:category: :function
:type: doublereal
:arguments: 
- norm: 
    :type: char
    :intent: input
- transr: 
    :type: char
    :intent: input
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: doublecomplex
    :intent: input
    :dims: 
    - n*(n+1)/2
- work: 
    :type: doublereal
    :intent: workspace
    :dims: 
    - lwork
:substitutions: 
  lwork: "((lsame_(&norm,\"I\")) || ((('1') || ('o')))) ? n : 0"
:fortran_help: "      DOUBLE PRECISION FUNCTION ZLANHF( NORM, TRANSR, UPLO, N, A, WORK )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  ZLANHF  returns the value of the one norm,  or the Frobenius norm, or\n\
  *  the  infinity norm,  or the  element of  largest absolute value  of a\n\
  *  complex Hermitian matrix A in RFP format.\n\
  *\n\
  *  Description\n\
  *  ===========\n\
  *\n\
  *  ZLANHF returns the value\n\
  *\n\
  *     ZLANHF = ( max(abs(A(i,j))), NORM = 'M' or 'm'\n\
  *              (\n\
  *              ( norm1(A),         NORM = '1', 'O' or 'o'\n\
  *              (\n\
  *              ( normI(A),         NORM = 'I' or 'i'\n\
  *              (\n\
  *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'\n\
  *\n\
  *  where  norm1  denotes the  one norm of a matrix (maximum column sum),\n\
  *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and\n\
  *  normF  denotes the  Frobenius norm of a matrix (square root of sum of\n\
  *  squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  NORM      (input) CHARACTER\n\
  *            Specifies the value to be returned in ZLANHF as described\n\
  *            above.\n\
  *\n\
  *  TRANSR    (input) CHARACTER\n\
  *            Specifies whether the RFP format of A is normal or\n\
  *            conjugate-transposed format.\n\
  *            = 'N':  RFP format is Normal\n\
  *            = 'C':  RFP format is Conjugate-transposed\n\
  *\n\
  *  UPLO      (input) CHARACTER\n\
  *            On entry, UPLO specifies whether the RFP matrix A came from\n\
  *            an upper or lower triangular matrix as follows:\n\
  *\n\
  *            UPLO = 'U' or 'u' RFP A came from an upper triangular\n\
  *            matrix\n\
  *\n\
  *            UPLO = 'L' or 'l' RFP A came from a  lower triangular\n\
  *            matrix\n\
  *\n\
  *  N         (input) INTEGER\n\
  *            The order of the matrix A.  N >= 0.  When N = 0, ZLANHF is\n\
  *            set to zero.\n\
  *\n\
  *   A        (input) COMPLEX*16 array, dimension ( N*(N+1)/2 );\n\
  *            On entry, the matrix A in RFP Format.\n\
  *            RFP Format is described by TRANSR, UPLO and N as follows:\n\
  *            If TRANSR='N' then RFP A is (0:N,0:K-1) when N is even;\n\
  *            K=N/2. RFP A is (0:N-1,0:K) when N is odd; K=N/2. If\n\
  *            TRANSR = 'C' then RFP is the Conjugate-transpose of RFP A\n\
  *            as defined when TRANSR = 'N'. The contents of RFP A are\n\
  *            defined by UPLO as follows: If UPLO = 'U' the RFP A\n\
  *            contains the ( N*(N+1)/2 ) elements of upper packed A\n\
  *            either in normal or conjugate-transpose Format. If\n\
  *            UPLO = 'L' the RFP A contains the ( N*(N+1) /2 ) elements\n\
  *            of lower packed A either in normal or conjugate-transpose\n\
  *            Format. The LDA of RFP A is (N+1)/2 when TRANSR = 'C'. When\n\
  *            TRANSR is 'N' the LDA is N+1 when N is even and is N when\n\
  *            is odd. See the Note below for more details.\n\
  *            Unchanged on exit.\n\
  *\n\
  *  WORK      (workspace) DOUBLE PRECISION array, dimension (LWORK),\n\
  *            where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,\n\
  *            WORK is not referenced.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  We first consider Standard Packed Format when N is even.\n\
  *  We give an example where N = 6.\n\
  *\n\
  *      AP is Upper             AP is Lower\n\
  *\n\
  *   00 01 02 03 04 05       00\n\
  *      11 12 13 14 15       10 11\n\
  *         22 23 24 25       20 21 22\n\
  *            33 34 35       30 31 32 33\n\
  *               44 45       40 41 42 43 44\n\
  *                  55       50 51 52 53 54 55\n\
  *\n\
  *\n\
  *  Let TRANSR = 'N'. RFP holds AP as follows:\n\
  *  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last\n\
  *  three columns of AP upper. The lower triangle A(4:6,0:2) consists of\n\
  *  conjugate-transpose of the first three columns of AP upper.\n\
  *  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first\n\
  *  three columns of AP lower. The upper triangle A(0:2,0:2) consists of\n\
  *  conjugate-transpose of the last three columns of AP lower.\n\
  *  To denote conjugate we place -- above the element. This covers the\n\
  *  case N even and TRANSR = 'N'.\n\
  *\n\
  *         RFP A                   RFP A\n\
  *\n\
  *                                -- -- --\n\
  *        03 04 05                33 43 53\n\
  *                                   -- --\n\
  *        13 14 15                00 44 54\n\
  *                                      --\n\
  *        23 24 25                10 11 55\n\
  *\n\
  *        33 34 35                20 21 22\n\
  *        --\n\
  *        00 44 45                30 31 32\n\
  *        -- --\n\
  *        01 11 55                40 41 42\n\
  *        -- -- --\n\
  *        02 12 22                50 51 52\n\
  *\n\
  *  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-\n\
  *  transpose of RFP A above. One therefore gets:\n\
  *\n\
  *\n\
  *           RFP A                   RFP A\n\
  *\n\
  *     -- -- -- --                -- -- -- -- -- --\n\
  *     03 13 23 33 00 01 02    33 00 10 20 30 40 50\n\
  *     -- -- -- -- --                -- -- -- -- --\n\
  *     04 14 24 34 44 11 12    43 44 11 21 31 41 51\n\
  *     -- -- -- -- -- --                -- -- -- --\n\
  *     05 15 25 35 45 55 22    53 54 55 22 32 42 52\n\
  *\n\
  *\n\
  *  We next  consider Standard Packed Format when N is odd.\n\
  *  We give an example where N = 5.\n\
  *\n\
  *     AP is Upper                 AP is Lower\n\
  *\n\
  *   00 01 02 03 04              00\n\
  *      11 12 13 14              10 11\n\
  *         22 23 24              20 21 22\n\
  *            33 34              30 31 32 33\n\
  *               44              40 41 42 43 44\n\
  *\n\
  *\n\
  *  Let TRANSR = 'N'. RFP holds AP as follows:\n\
  *  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last\n\
  *  three columns of AP upper. The lower triangle A(3:4,0:1) consists of\n\
  *  conjugate-transpose of the first two   columns of AP upper.\n\
  *  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first\n\
  *  three columns of AP lower. The upper triangle A(0:1,1:2) consists of\n\
  *  conjugate-transpose of the last two   columns of AP lower.\n\
  *  To denote conjugate we place -- above the element. This covers the\n\
  *  case N odd  and TRANSR = 'N'.\n\
  *\n\
  *         RFP A                   RFP A\n\
  *\n\
  *                                   -- --\n\
  *        02 03 04                00 33 43\n\
  *                                      --\n\
  *        12 13 14                10 11 44\n\
  *\n\
  *        22 23 24                20 21 22\n\
  *        --\n\
  *        00 33 34                30 31 32\n\
  *        -- --\n\
  *        01 11 44                40 41 42\n\
  *\n\
  *  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-\n\
  *  transpose of RFP A above. One therefore gets:\n\
  *\n\
  *\n\
  *           RFP A                   RFP A\n\
  *\n\
  *     -- -- --                   -- -- -- -- -- --\n\
  *     02 12 22 00 01             00 10 20 30 40 50\n\
  *     -- -- -- --                   -- -- -- -- --\n\
  *     03 13 23 33 11             33 11 21 31 41 51\n\
  *     -- -- -- -- --                   -- -- -- --\n\
  *     04 14 24 34 44             43 44 22 32 42 52\n\
  *\n\
  *  =====================================================================\n\
  *\n"