File: zlarft

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (133 lines) | stat: -rwxr-xr-x 4,591 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
--- 
:name: zlarft
:md5sum: e49ec2f4472e3bae691c01b3a570c0e5
:category: :subroutine
:arguments: 
- direct: 
    :type: char
    :intent: input
- storev: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- k: 
    :type: integer
    :intent: input
- v: 
    :type: doublecomplex
    :intent: input/output
    :dims: 
    - ldv
    - "lsame_(&storev,\"C\") ? k : lsame_(&storev,\"R\") ? n : 0"
- ldv: 
    :type: integer
    :intent: input
- tau: 
    :type: doublecomplex
    :intent: input
    :dims: 
    - k
- t: 
    :type: doublecomplex
    :intent: output
    :dims: 
    - ldt
    - k
- ldt: 
    :type: integer
    :intent: input
:substitutions: 
  ldt: k
:fortran_help: "      SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  ZLARFT forms the triangular factor T of a complex block reflector H\n\
  *  of order n, which is defined as a product of k elementary reflectors.\n\
  *\n\
  *  If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;\n\
  *\n\
  *  If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.\n\
  *\n\
  *  If STOREV = 'C', the vector which defines the elementary reflector\n\
  *  H(i) is stored in the i-th column of the array V, and\n\
  *\n\
  *     H  =  I - V * T * V'\n\
  *\n\
  *  If STOREV = 'R', the vector which defines the elementary reflector\n\
  *  H(i) is stored in the i-th row of the array V, and\n\
  *\n\
  *     H  =  I - V' * T * V\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  DIRECT  (input) CHARACTER*1\n\
  *          Specifies the order in which the elementary reflectors are\n\
  *          multiplied to form the block reflector:\n\
  *          = 'F': H = H(1) H(2) . . . H(k) (Forward)\n\
  *          = 'B': H = H(k) . . . H(2) H(1) (Backward)\n\
  *\n\
  *  STOREV  (input) CHARACTER*1\n\
  *          Specifies how the vectors which define the elementary\n\
  *          reflectors are stored (see also Further Details):\n\
  *          = 'C': columnwise\n\
  *          = 'R': rowwise\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the block reflector H. N >= 0.\n\
  *\n\
  *  K       (input) INTEGER\n\
  *          The order of the triangular factor T (= the number of\n\
  *          elementary reflectors). K >= 1.\n\
  *\n\
  *  V       (input/output) COMPLEX*16 array, dimension\n\
  *                               (LDV,K) if STOREV = 'C'\n\
  *                               (LDV,N) if STOREV = 'R'\n\
  *          The matrix V. See further details.\n\
  *\n\
  *  LDV     (input) INTEGER\n\
  *          The leading dimension of the array V.\n\
  *          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.\n\
  *\n\
  *  TAU     (input) COMPLEX*16 array, dimension (K)\n\
  *          TAU(i) must contain the scalar factor of the elementary\n\
  *          reflector H(i).\n\
  *\n\
  *  T       (output) COMPLEX*16 array, dimension (LDT,K)\n\
  *          The k by k triangular factor T of the block reflector.\n\
  *          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is\n\
  *          lower triangular. The rest of the array is not used.\n\
  *\n\
  *  LDT     (input) INTEGER\n\
  *          The leading dimension of the array T. LDT >= K.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  The shape of the matrix V and the storage of the vectors which define\n\
  *  the H(i) is best illustrated by the following example with n = 5 and\n\
  *  k = 3. The elements equal to 1 are not stored; the corresponding\n\
  *  array elements are modified but restored on exit. The rest of the\n\
  *  array is not used.\n\
  *\n\
  *  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':\n\
  *\n\
  *               V = (  1       )                 V = (  1 v1 v1 v1 v1 )\n\
  *                   ( v1  1    )                     (     1 v2 v2 v2 )\n\
  *                   ( v1 v2  1 )                     (        1 v3 v3 )\n\
  *                   ( v1 v2 v3 )\n\
  *                   ( v1 v2 v3 )\n\
  *\n\
  *  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':\n\
  *\n\
  *               V = ( v1 v2 v3 )                 V = ( v1 v1  1       )\n\
  *                   ( v1 v2 v3 )                     ( v2 v2 v2  1    )\n\
  *                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )\n\
  *                   (     1 v3 )\n\
  *                   (        1 )\n\
  *\n\
  *  =====================================================================\n\
  *\n"