File: zlascl

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (102 lines) | stat: -rwxr-xr-x 3,331 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
--- 
:name: zlascl
:md5sum: bebaac4c17a950c4466313a4484f3dac
:category: :subroutine
:arguments: 
- type: 
    :type: char
    :intent: input
- kl: 
    :type: integer
    :intent: input
- ku: 
    :type: integer
    :intent: input
- cfrom: 
    :type: doublereal
    :intent: input
- cto: 
    :type: doublereal
    :intent: input
- m: 
    :type: integer
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: doublecomplex
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE ZLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  ZLASCL multiplies the M by N complex matrix A by the real scalar\n\
  *  CTO/CFROM.  This is done without over/underflow as long as the final\n\
  *  result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that\n\
  *  A may be full, upper triangular, lower triangular, upper Hessenberg,\n\
  *  or banded.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  TYPE    (input) CHARACTER*1\n\
  *          TYPE indices the storage type of the input matrix.\n\
  *          = 'G':  A is a full matrix.\n\
  *          = 'L':  A is a lower triangular matrix.\n\
  *          = 'U':  A is an upper triangular matrix.\n\
  *          = 'H':  A is an upper Hessenberg matrix.\n\
  *          = 'B':  A is a symmetric band matrix with lower bandwidth KL\n\
  *                  and upper bandwidth KU and with the only the lower\n\
  *                  half stored.\n\
  *          = 'Q':  A is a symmetric band matrix with lower bandwidth KL\n\
  *                  and upper bandwidth KU and with the only the upper\n\
  *                  half stored.\n\
  *          = 'Z':  A is a band matrix with lower bandwidth KL and upper\n\
  *                  bandwidth KU. See ZGBTRF for storage details.\n\
  *\n\
  *  KL      (input) INTEGER\n\
  *          The lower bandwidth of A.  Referenced only if TYPE = 'B',\n\
  *          'Q' or 'Z'.\n\
  *\n\
  *  KU      (input) INTEGER\n\
  *          The upper bandwidth of A.  Referenced only if TYPE = 'B',\n\
  *          'Q' or 'Z'.\n\
  *\n\
  *  CFROM   (input) DOUBLE PRECISION\n\
  *  CTO     (input) DOUBLE PRECISION\n\
  *          The matrix A is multiplied by CTO/CFROM. A(I,J) is computed\n\
  *          without over/underflow if the final result CTO*A(I,J)/CFROM\n\
  *          can be represented without over/underflow.  CFROM must be\n\
  *          nonzero.\n\
  *\n\
  *  M       (input) INTEGER\n\
  *          The number of rows of the matrix A.  M >= 0.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of columns of the matrix A.  N >= 0.\n\
  *\n\
  *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)\n\
  *          The matrix to be multiplied by CTO/CFROM.  See TYPE for the\n\
  *          storage type.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,M).\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          0  - successful exit\n\
  *          <0 - if INFO = -i, the i-th argument had an illegal value.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"