File: zptcon

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (84 lines) | stat: -rwxr-xr-x 2,584 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
--- 
:name: zptcon
:md5sum: 55726a854f4ea93e20da6057c21868f0
:category: :subroutine
:arguments: 
- n: 
    :type: integer
    :intent: input
- d: 
    :type: doublereal
    :intent: input
    :dims: 
    - n
- e: 
    :type: doublecomplex
    :intent: input
    :dims: 
    - n-1
- anorm: 
    :type: doublereal
    :intent: input
- rcond: 
    :type: doublereal
    :intent: output
- rwork: 
    :type: doublereal
    :intent: workspace
    :dims: 
    - n
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE ZPTCON( N, D, E, ANORM, RCOND, RWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  ZPTCON computes the reciprocal of the condition number (in the\n\
  *  1-norm) of a complex Hermitian positive definite tridiagonal matrix\n\
  *  using the factorization A = L*D*L**H or A = U**H*D*U computed by\n\
  *  ZPTTRF.\n\
  *\n\
  *  Norm(inv(A)) is computed by a direct method, and the reciprocal of\n\
  *  the condition number is computed as\n\
  *                   RCOND = 1 / (ANORM * norm(inv(A))).\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.\n\
  *\n\
  *  D       (input) DOUBLE PRECISION array, dimension (N)\n\
  *          The n diagonal elements of the diagonal matrix D from the\n\
  *          factorization of A, as computed by ZPTTRF.\n\
  *\n\
  *  E       (input) COMPLEX*16 array, dimension (N-1)\n\
  *          The (n-1) off-diagonal elements of the unit bidiagonal factor\n\
  *          U or L from the factorization of A, as computed by ZPTTRF.\n\
  *\n\
  *  ANORM   (input) DOUBLE PRECISION\n\
  *          The 1-norm of the original matrix A.\n\
  *\n\
  *  RCOND   (output) DOUBLE PRECISION\n\
  *          The reciprocal of the condition number of the matrix A,\n\
  *          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the\n\
  *          1-norm of inv(A) computed in this routine.\n\
  *\n\
  *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  The method used is described in Nicholas J. Higham, \"Efficient\n\
  *  Algorithms for Computing the Condition Number of a Tridiagonal\n\
  *  Matrix\", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986.\n\
  *\n\
  *  =====================================================================\n\
  *\n"