File: zstein

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (159 lines) | stat: -rwxr-xr-x 5,193 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
--- 
:name: zstein
:md5sum: e31fefcd280e4ed544d4a3d6fa703ad2
:category: :subroutine
:arguments: 
- n: 
    :type: integer
    :intent: input
- d: 
    :type: doublereal
    :intent: input
    :dims: 
    - n
- e: 
    :type: doublereal
    :intent: input
    :dims: 
    - n-1
- m: 
    :type: integer
    :intent: input
- w: 
    :type: doublereal
    :intent: input
    :dims: 
    - n
- iblock: 
    :type: integer
    :intent: input
    :dims: 
    - n
- isplit: 
    :type: integer
    :intent: input
    :dims: 
    - n
- z: 
    :type: doublecomplex
    :intent: output
    :dims: 
    - ldz
    - m
- ldz: 
    :type: integer
    :intent: input
- work: 
    :type: doublereal
    :intent: workspace
    :dims: 
    - 5*n
- iwork: 
    :type: integer
    :intent: workspace
    :dims: 
    - n
- ifail: 
    :type: integer
    :intent: output
    :dims: 
    - m
- info: 
    :type: integer
    :intent: output
:substitutions: 
  ldz: MAX(1,n)
  m: n
:fortran_help: "      SUBROUTINE ZSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, IWORK, IFAIL, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  ZSTEIN computes the eigenvectors of a real symmetric tridiagonal\n\
  *  matrix T corresponding to specified eigenvalues, using inverse\n\
  *  iteration.\n\
  *\n\
  *  The maximum number of iterations allowed for each eigenvector is\n\
  *  specified by an internal parameter MAXITS (currently set to 5).\n\
  *\n\
  *  Although the eigenvectors are real, they are stored in a complex\n\
  *  array, which may be passed to ZUNMTR or ZUPMTR for back\n\
  *  transformation to the eigenvectors of a complex Hermitian matrix\n\
  *  which was reduced to tridiagonal form.\n\
  *\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix.  N >= 0.\n\
  *\n\
  *  D       (input) DOUBLE PRECISION array, dimension (N)\n\
  *          The n diagonal elements of the tridiagonal matrix T.\n\
  *\n\
  *  E       (input) DOUBLE PRECISION array, dimension (N-1)\n\
  *          The (n-1) subdiagonal elements of the tridiagonal matrix\n\
  *          T, stored in elements 1 to N-1.\n\
  *\n\
  *  M       (input) INTEGER\n\
  *          The number of eigenvectors to be found.  0 <= M <= N.\n\
  *\n\
  *  W       (input) DOUBLE PRECISION array, dimension (N)\n\
  *          The first M elements of W contain the eigenvalues for\n\
  *          which eigenvectors are to be computed.  The eigenvalues\n\
  *          should be grouped by split-off block and ordered from\n\
  *          smallest to largest within the block.  ( The output array\n\
  *          W from DSTEBZ with ORDER = 'B' is expected here. )\n\
  *\n\
  *  IBLOCK  (input) INTEGER array, dimension (N)\n\
  *          The submatrix indices associated with the corresponding\n\
  *          eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to\n\
  *          the first submatrix from the top, =2 if W(i) belongs to\n\
  *          the second submatrix, etc.  ( The output array IBLOCK\n\
  *          from DSTEBZ is expected here. )\n\
  *\n\
  *  ISPLIT  (input) INTEGER array, dimension (N)\n\
  *          The splitting points, at which T breaks up into submatrices.\n\
  *          The first submatrix consists of rows/columns 1 to\n\
  *          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1\n\
  *          through ISPLIT( 2 ), etc.\n\
  *          ( The output array ISPLIT from DSTEBZ is expected here. )\n\
  *\n\
  *  Z       (output) COMPLEX*16 array, dimension (LDZ, M)\n\
  *          The computed eigenvectors.  The eigenvector associated\n\
  *          with the eigenvalue W(i) is stored in the i-th column of\n\
  *          Z.  Any vector which fails to converge is set to its current\n\
  *          iterate after MAXITS iterations.\n\
  *          The imaginary parts of the eigenvectors are set to zero.\n\
  *\n\
  *  LDZ     (input) INTEGER\n\
  *          The leading dimension of the array Z.  LDZ >= max(1,N).\n\
  *\n\
  *  WORK    (workspace) DOUBLE PRECISION array, dimension (5*N)\n\
  *\n\
  *  IWORK   (workspace) INTEGER array, dimension (N)\n\
  *\n\
  *  IFAIL   (output) INTEGER array, dimension (M)\n\
  *          On normal exit, all elements of IFAIL are zero.\n\
  *          If one or more eigenvectors fail to converge after\n\
  *          MAXITS iterations, then their indices are stored in\n\
  *          array IFAIL.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0: successful exit\n\
  *          < 0: if INFO = -i, the i-th argument had an illegal value\n\
  *          > 0: if INFO = i, then i eigenvectors failed to converge\n\
  *               in MAXITS iterations.  Their indices are stored in\n\
  *               array IFAIL.\n\
  *\n\
  *  Internal Parameters\n\
  *  ===================\n\
  *\n\
  *  MAXITS  INTEGER, default = 5\n\
  *          The maximum number of iterations performed.\n\
  *\n\
  *  EXTRA   INTEGER, default = 2\n\
  *          The number of iterations performed after norm growth\n\
  *          criterion is satisfied, should be at least 1.\n\
  *\n\n\
  * =====================================================================\n\
  *\n"